Lei Wang

List of Publications by Citations

Source: https://exaly.com/author-pdf/6951703/lei-wang-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 113
 5,799
 31
 75

 papers
 6,656
 7.4
 5.82

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
113	Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angewandte Chemie - International Edition, 2013, 52, 3953-7	16.4	2400
112	Stable Aqueous Dispersion of Graphene Nanosheets: Noncovalent Functionalization by a Polymeric Reducing Agent and Their Subsequent Decoration with Ag Nanoparticles for Enzymeless Hydrogen Peroxide Detection. <i>Macromolecules</i> , 2010 , 43, 10078-10083	5.5	345
111	Reconfigurable magnetic microrobot swarm: Multimode transformation, locomotion, and manipulation. <i>Science Robotics</i> , 2019 , 4,	18.6	252
110	One-pot green synthesis of Ag nanoparticles-graphene nanocomposites and their applications in SERS, H2O2, and glucose sensing. <i>RSC Advances</i> , 2012 , 2, 538-545	3.7	250
109	Versatile electrochemiluminescence assays for cancer cells based on dendrimer/CdSe-ZnS-quantum dot nanoclusters. <i>Analytical Chemistry</i> , 2011 , 83, 3873-80	7.8	177
108	3D self-supported hierarchical core/shell structured MnCo2O4@CoS arrays for high-energy supercapacitors. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 1822-1831	13	108
107	Hydrodynamically driven self-assembly of giant vesicles of metal nanoparticles for remote-controlled release. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 2463-8	16.4	103
106	Aniline as a dispersing and stabilizing agent for reduced graphene oxide and its subsequent decoration with Ag nanoparticles for enzymeless hydrogen peroxide detection. <i>Journal of Colloid and Interface Science</i> , 2011 , 363, 615-9	9.3	101
105	Acid-Disintegratable Polymersomes of pH-Responsive Amphiphilic Diblock Copolymers for Intracellular Drug Delivery. <i>Macromolecules</i> , 2015 , 48, 7262-7272	5.5	97
104	Ag@poly(m-phenylenediamine) core-shell nanoparticles for highly selective, multiplex nucleic acid detection. <i>Langmuir</i> , 2011 , 27, 2170-5	4	92
103	Preparation of Ag nanoparticle-decorated poly(m-phenylenediamine) microparticles and their application for hydrogen peroxide detection. <i>Analyst, The</i> , 2011 , 136, 1806-9	5	81
102	Magnetic electrochemiluminescent Fe3O4/CdSe-CdS nanoparticle/polyelectrolyte nanocomposite for highly efficient immunosensing of a cancer biomarker. <i>Chemistry - A European Journal</i> , 2011 , 17, 641	-8 .8	79
101	A Facile, Nonreactive Hydrogen Peroxide (HO) Detection Method Enabled by Ion Chromatography with UV Detector. <i>Analytical Chemistry</i> , 2017 , 89, 11537-11544	7.8	74
100	Electrochemiluminescence immunosensor based on nanocomposite film of CdS quantum dots-carbon nanotubes combined with gold nanoparticles-chitosan. <i>Electrochemistry Communications</i> , 2010 , 12, 22-26	5.1	74
99	Continuous Microfluidic Self-Assembly of Hybrid Janus-Like Vesicular Motors: Autonomous Propulsion and Controlled Release. <i>Small</i> , 2015 , 11, 3762-7	11	58
98	A novel quantum dot nanocluster as versatile probe for electrochemiluminescence and electrochemical assays of DNA and cancer cells. <i>Biosensors and Bioelectronics</i> , 2014 , 52, 69-75	11.8	57
97	Construction of polymer coated coreShell magnetic mesoporous silica nanoparticles with triple responsive drug delivery. <i>Polymer Chemistry</i> , 2017 , 8, 5852-5864	4.9	55

(2017-2013)

96	Electroformation of giant unilamellar vesicles using interdigitated ITO electrodes. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 7125	13	53	
95	Lipase-Powered Mesoporous Silica Nanomotors for Triglyceride Degradation. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 7992-7996	16.4	47	
94	Mixing enhancement of novel passive microfluidic mixers with cylindrical grooves. <i>Chemical Engineering Science</i> , 2012 , 81, 157-163	4.4	47	
93	A novel electrochemiluminescent immunosensor based on CdS-coated ZnO nanorod arrays for HepG2 cell detection. <i>Nanoscale</i> , 2015 , 7, 3627-33	7.7	44	
92	Vesicular self-assembly of colloidal amphiphiles in microfluidics. <i>ACS Applied Materials & amp; Interfaces</i> , 2013 , 5, 9746-51	9.5	42	•
91	Efficient Way to Generate Protein-Based Nanoparticles by in-Situ Photoinitiated Polymerization-Induced Self-Assembly. <i>ACS Macro Letters</i> , 2017 , 6, 689-694	6.6	39	
90	A facile approach for the reduction of 4-nitrophenol and degradation of congo red using gold nanoparticles or laccase decorated hybrid inorganic nanoparticles/polymer-biomacromolecules vesicles. <i>Materials Science and Engineering C</i> , 2019 , 94, 524-533	8.3	39	
89	Carbon dots-fed Shewanella oneidensis MR-1 for bioelectricity enhancement. <i>Nature Communications</i> , 2020 , 11, 1379	17.4	38	
88	High-Performance porous MIM-type capacitive humidity sensor realized via inductive coupled plasma and reactive-Ion etching. <i>Sensors and Actuators B: Chemical</i> , 2018 , 258, 704-714	8.5	38	
87	Synthesis and Applications of Red-Emissive Carbon Dots. <i>Chemical Record</i> , 2019 , 19, 2083-2094	6.6	36	
86	Lipid nanotube formation using space-regulated electric field above interdigitated electrodes. <i>ACS Nano</i> , 2014 , 8, 3961-9	16.7	35	
85	Biomimicry of Cellular Motility and Communication Based on Synthetic Soft-Architectures. <i>Small</i> , 2020 , 16, e1907680	11	31	
84	Morphology-controlled synthesis of Ag nanoparticle decorated poly(o-phenylenediamine) using microfluidics and its application for hydrogen peroxide detection. <i>Chemical Engineering Journal</i> , 2015 , 268, 102-108	14.7	31	
83	Mixing enhancement of a passive microfluidic mixer containing triangle baffles. <i>Asia-Pacific Journal of Chemical Engineering</i> , 2014 , 9, 877-885	1.3	31	
82	Autonomic Behaviors in Lipase-Active Oil Droplets. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 1067-1071	16.4	30	
81	Dynamic Covalent Silica Nanoparticles for pH-Switchable Pickering Emulsions. <i>Langmuir</i> , 2018 , 34, 5798	3- <u>4</u> 806	29	
80	Fabrication of Chemical Gradient Using Space Limited Plasma Oxidation and its Application for Droplet Motion. <i>Advanced Functional Materials</i> , 2012 , 22, 4533-4538	15.6	29	
79	Coordinated Membrane Fusion of Proteinosomes by Contact-Induced Hydrogel Self-Healing. <i>Small</i> , 2017 , 13, 1700467	11	27	

78	A Highly Efficient ZrO2 Nanoparticle Based Electrochemical Sensor for the Detection of Organophosphorus Pesticides. <i>Chinese Journal of Chemistry</i> , 2015 , 33, 1135-1139	4.9	27
77	Engineering proteinosomes with renewable predatory behaviour towards living organisms. <i>Materials Horizons</i> , 2020 , 7, 157-163	14.4	27
76	Interactions of the baicalin and baicalein with bilayer lipid membranes investigated by cyclic voltammetry and UV-Vis spectroscopy. <i>Bioelectrochemistry</i> , 2014 , 95, 29-33	5.6	26
75	Enzyme-Modulated Anaerobic Encapsulation of Chlorella Cells Allows Switching from O to H Production. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 3992-3995	16.4	26
74	Electrochemiluminescent TiO/CdS nanocomposites for efficient immunosensing of HepG2 cells. Journal of Materials Chemistry B, 2013 , 1, 5021-5027	7.3	25
73	Electrically tunable terahertz wave modulator based on complementary metamaterial and graphene. <i>Journal of Applied Physics</i> , 2014 , 115, 17B903	2.5	24
72	Design and analysis of ultrafast and high-sensitivity microwave transduction humidity sensor based on belt-shaped MoO3 nanomaterial. <i>Sensors and Actuators B: Chemical</i> , 2020 , 304, 127138	8.5	24
71	Self-assembly via microfluidics. <i>Lab on A Chip</i> , 2015 , 15, 4383-6	7.2	22
70	Bio-inspired engineering proteinosomes with a cell-wall-like protective shell by self-assembly of a metal-chelated complex. <i>Chemical Communications</i> , 2016 , 52, 13803-13806	5.8	21
69	Synthesis of bifunctional carbon quantum dots for bioimaging and anti-inflammation. <i>Nanotechnology</i> , 2020 , 31, 175102	3.4	20
68	Enzyme Conformation Influences the Performance of Lipase-powered Nanomotors. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 21080-21087	16.4	20
67	Signal-On Electrochemiluminescence of Self-Ordered Molybdenum Oxynitride Nanotube Arrays for Label-Free Cytosensing. <i>Analytical Chemistry</i> , 2018 , 90, 10858-10864	7.8	19
66	In Situ Self-Assembly of Coacervate Microdroplets into Viable Artificial Cell Wall with Heritability. <i>Advanced Functional Materials</i> , 2018 , 28, 1705699	15.6	18
65	Single-step fabrication of multi-compartmentalized biphasic proteinosomes. <i>Chemical Communications</i> , 2017 , 53, 8537-8540	5.8	18
64	Construction of biological hybrid microcapsules with defined permeability towards programmed release of biomacromolecules. <i>Chemical Communications</i> , 2017 , 53, 11678-11681	5.8	17
63	Design and Construction of Hybrid Microcapsules with Higher-Order Structure and Multiple Functions. <i>Advanced Science</i> , 2018 , 5, 1700460	13.6	17
62	Autonomic Behaviors in Lipase-Active Oil Droplets. <i>Angewandte Chemie</i> , 2019 , 131, 1079-1083	3.6	17
61	Preparation and properties of aligned graphene composites. <i>RSC Advances</i> , 2015 , 5, 31670-31676	3.7	16

(2018-2013)

60	Hydrodynamically Driven Self-Assembly of Giant Vesicles of Metal Nanoparticles for Remote-Controlled Release. <i>Angewandte Chemie</i> , 2013 , 125, 2523-2528	3.6	16
59	In Situ Gelation-Induced Death of Cancer Cells Based on Proteinosomes. <i>Biomacromolecules</i> , 2017 , 18, 2446-2453	6.9	15
58	Lipase-Powered Mesoporous Silica Nanomotors for Triglyceride Degradation. <i>Angewandte Chemie</i> , 2019 , 131, 8076-8080	3.6	15
57	Programmable Modulation of Membrane Permeability of Proteinosome upon Multiple Stimuli Responses. <i>ACS Macro Letters</i> , 2016 , 5, 961-966	6.6	15
56	Formation of hybrid corelhell microgels induced by autonomous unidirectional migration of nanoparticles. <i>Materials Horizons</i> , 2016 , 3, 78-82	14.4	14
55	Fusion-Induced Structural and Functional Evolution in Binary Emulsion Communities. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 16953-16960	16.4	13
54	Self-assembly of colloids based on microfluidics. <i>Nanoscale</i> , 2019 , 11, 16708-16722	7.7	13
53	Photosynthetic hydrogen production by droplet-based microbial micro-reactors under aerobic conditions. <i>Nature Communications</i> , 2020 , 11, 5985	17.4	13
52	Bioinspired Dual-Enzyme Colloidosome Reactors for High-Performance Biphasic Catalysis. <i>ACS Applied Materials & District Materials & Di</i>	9.5	13
51	High-sensitivity radio frequency noncontact sensing and accurate quantification of uric acid in temperature-variant aqueous solutions. <i>Applied Physics Express</i> , 2018 , 11, 117001	2.4	13
50	Synthesis and properties of soap-free P(2-EHA-BA) emulsion for removable pressure sensitive adhesives. <i>RSC Advances</i> , 2014 , 4, 47708-47713	3.7	12
49	Forming lipid bilayer membrane arrays on micropatterned polyelectrolyte film surfaces. <i>Chemistry - A European Journal</i> , 2013 , 19, 9059-63	4.8	10
48	A comparative study on the impact of the carbon nanotubes-modified polydimethylsiloxane nanocomposites on the colonization dynamics of the pioneer biofilm communities. <i>International Biodeterioration and Biodegradation</i> , 2018 , 129, 195-201	4.8	9
47	Effect of CNT/PDMS Nanocomposites on the Dynamics of Pioneer Bacterial Communities in the Natural Biofilms of Seawater. <i>Materials</i> , 2018 , 11,	3.5	9
46	Interfacial self-assembly of gold nanoparticle-polymer nanoconjugates into microcapsules with near-infrared light modulated biphasic catalysis efficiency. <i>Chemical Communications</i> , 2019 , 55, 10760-1	6 763	9
45	Formation of lipid bilayer microarrays on photo-oxidized polystyrene surfaces. <i>Chemistry - A European Journal</i> , 2011 , 17, 14741-4	4.8	9
44	Near-Infrared-Induced Contractile Proteinosome Microreactor with a Fast Control on Enzymatic Reactions. <i>ACS Applied Materials & Enzymatic Reactions</i> , 12, 41079-41087	9.5	9
43	Single-Cell Nanometric Coating Towards Whole-Cell-Based Biodevices and Biosensors. <i>ChemistrySelect</i> , 2018 , 3, 7208-7221	1.8	9

42	Ultrafast Detection and Discrimination of Methanol Gas Using a Polyindole-Embedded Substrate Integrated Waveguide Microwave Sensor. <i>ACS Sensors</i> , 2020 , 5, 3939-3948	9.2	8
41	Membranization of Coacervates into Artificial Phagocytes with Predation toward Bacteria. <i>ACS Nano</i> , 2021 , 15, 10048-10057	16.7	8
40	Photosynthetic Proteins in Supported Lipid Bilayers: Towards a Biokleptic Approach for Energy Capture. <i>Small</i> , 2015 , 11, 3306-18	11	7
39	Polyacrylate emulsion containing IBOMA for removable pressure sensitive adhesives. <i>Journal of Applied Polymer Science</i> , 2016 , 133, n/a-n/a	2.9	7
38	Dynamic Behaviour in Microcompartments. Chemistry - A European Journal, 2019, 25, 16440	4.8	6
37	Preparation and properties of polyurethane-modified epoxy cured in different simulated gravity environments. <i>Journal of Applied Polymer Science</i> , 2015 , 132, n/a-n/a	2.9	6
36	Micromixing enhancement in a novel passive mixer with symmetrical cylindrical grooves. <i>Asia-Pacific Journal of Chemical Engineering</i> , 2015 , 10, 201-209	1.3	6
35	Polyoxometalate Modified by Zeolite Imidazole Framework for the pH-Responsive Electrodynamic/Chemodynamic Therapy ACS Applied Materials & Interfaces, 2022,	9.5	6
34	Combinatorial discovery of Mo-based polyoxometalate clusters for tumor photothermal therapy and normal cell protection. <i>Biomaterials Science</i> , 2020 , 8, 6017-6024	7.4	6
33	A review of multiple Pickering emulsions: Solid stabilization, preparation, particle effect, and application. <i>Chemical Engineering Science</i> , 2021 , 248, 117085	4.4	6
32	Differential Colonization Dynamics of Marine Biofilm-Forming Eukaryotic Microbes on Different Protective Coating Materials. <i>Polymers</i> , 2019 , 11,	4.5	5
31	Enzyme-Modulated Anaerobic Encapsulation of Chlorella Cells Allows Switching from O2 to H2 Production. <i>Angewandte Chemie</i> , 2019 , 131, 4032-4035	3.6	5
30	Light-triggered generation of multifunctional gas-filled capsules on-demand. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 652-658	7.1	5
29	Influence of Luminescent Nanomaterials on Plant Growth and Development. <i>ChemNanoMat</i> , 2021 , 7, 859-872	3.5	5
28	Construction of Hybrid Bi-microcompartments with Exocytosis-Inspired Behavior toward Fast Temperature-Modulated Transportation of Living Organisms. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 20795-20802	16.4	5
27	A novel porous adhesion material with ink absorbency for digital inkjet printing. <i>RSC Advances</i> , 2015 , 5, 36288-36294	3.7	4
26	In Situ Generation of Core-Shell Protein-Based Microcapsules with Regulated Ion Absorbance Capacity. <i>ChemistrySelect</i> , 2017 , 2, 6249-6253	1.8	4
25	Self-propelled micro/nanomotors for removal of insoluble water contaminants: microplastics and oil spills		4

(2013-2020)

24	Polymer-chlorella cells conjugating with aggregation-induced functionality switch towards hydrogen evolution. <i>Science China Technological Sciences</i> , 2020 , 63, 1416-1425	3.5	4
23	Fusion-Induced Structural and Functional Evolution in Binary Emulsion Communities. <i>Angewandte Chemie</i> , 2020 , 132, 17101-17108	3.6	3
22	Enzyme Conformation Influences the Performance of Lipase-powered Nanomotors. <i>Angewandte Chemie</i> , 2020 , 132, 21266-21273	3.6	3
21	CdS-modified porous foam nickel for label-free highly efficient detection of cancer cells. <i>RSC Advances</i> , 2016 , 6, 32874-32880	3.7	3
20	Engineering DNA-based capsule used as a platform for carrying various molecules. <i>Journal of Controlled Release</i> , 2017 , 259, e36	11.7	2
19	High-throughput sequencing analysis of marine pioneer surface-biofilm bacteria communities on different PDMS-based coatings. <i>Colloids and Surfaces B: Biointerfaces</i> , 2020 , 185, 110538	6	2
18	Target properties optimization on capacitive-type humidity sensor: Ingredients hybrid and integrated passive devices fabrication. <i>Sensors and Actuators B: Chemical</i> , 2021 , 340, 129883	8.5	2
17	Controlled Shape Transformation and Loading Release of Smart Hemispherical Hybrid Microgels Triggered by Inner Engines I Chemistry Select, 2018 , 3, 4067-4074	1.8	1
16	Lipid bilayer membrane arrays: fabrication and applications. <i>Advances in Biochemical Engineering/Biotechnology</i> , 2013 , 131, 121-52	1.7	1
15	A pH Self-Monitoring Heterogeneous Multicompartmental Proteinosome with Spatiotemporal Regulation of Insulin Transportation. <i>Chinese Journal of Chemistry</i> , 2021 , 39, 3386	4.9	1
14	Programmable spatial organization of liquid-phase condensations. <i>CheM</i> , 2022 , 8, 784-800	16.2	1
13	Highly Sensitive Humidity Sensors Based on Pt Functionalized ZIF-67 Towards Noncontact Healthcare Monitoring. <i>IEEE Sensors Journal</i> , 2021 , 21, 25616-25623	4	O
12	New protein-based smart materials 2020 , 415-436		O
11	Deciphering Single-Bacterium Adhesion Behavior Modulated by Extracellular Electron Transfer. <i>Nano Letters</i> , 2021 , 21, 5105-5115	11.5	O
10	Hierarchical Structures in Macromolecule-assembled Synthetic Cells <i>Macromolecular Rapid Communications</i> , 2022 , e2100926	4.8	0
9	REktitelbild: Autonomic Behaviors in Lipase-Active Oil Droplets (Angew. Chem. 4/2019). <i>Angewandte Chemie</i> , 2019 , 131, 1232-1232	3.6	
8	Microbubbles for Tumor Targeting Theranostics 2016 , 277-297		
7	MIGRATION OF CHARGED SPECIES IN LIPID BILAYER MEMBRANES UNDER AN ELECTRIC FIELD. <i>Nano</i> , 2013 , 08, 1230006	1.1	

- 6 Lipid nanotubes: Formation and applications.. Colloids and Surfaces B: Biointerfaces, 2022, 212, 112362 6
- Colonization characteristics of pioneer surface-associated eukaryotes during natural biofilm formation on PDMS-based composites via 18S rRNA gene sequencing methods. *International Biodeterioration and Biodegradation*, **2022**, 166, 105341

4.8

- Biosensor Based on Chitosan Nanocomposite277-307
- 3 Chitosan: Drug Release and Bone Tissue Engineering1722-1734
- REktitelbild: Construction of Hybrid Bi-microcompartments with Exocytosis-Inspired Behavior toward Fast Temperature-Modulated Transportation of Living Organisms (Angew. Chem. 38/2021). 3.6

 Angewandte Chemie, **2021**, 133, 21240-21240
- Construction of Hybrid Bi-microcompartments with Exocytosis-Inspired Behavior toward Fast

 Temperature-Modulated Transportation of Living Organisms. *Angewandte Chemie*, **2021**, 133, 20963-20970