Rebecca Re

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6951445/publications.pdf

Version: 2024-02-01

		516710	526287
50	1,071	16	27
papers	citations	h-index	g-index
F0	F0	F.O.	063
50	50	50	963
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Multi-laboratory performance assessment of diffuse optics instruments: the BitMap exercise. Journal of Biomedical Optics, 2022, 27, .	2.6	9
2	Time-Domain Near-Infrared Spectroscopy in Subjects with Asymptomatic Cerebral Small Vessel Disease. Applied Sciences (Switzerland), 2021 , 11 , 2407 .	2.5	1
3	Optical characterization of 3D printed PLA and ABS filaments for diffuse optics applications. PLoS ONE, 2021, 16, e0253181.	2.5	20
4	Effect of adipose tissue thickness and tissue optical properties on the differential pathlength factor estimation for NIRS studies on human skeletal muscle. Biomedical Optics Express, 2021, 12, 571.	2.9	11
5	Adipose tissue thickness and optical properties affect differential pathlength factor in NIRS studies on human skeletal muscle., 2021,,.		O
6	Brain activations during programming tasks: TD-NIRS and EEG study. , 2021, , .		1
7	Filament 3D printing technology for diffuse optics applications: advantages and drawbacks. , 2021, , .		O
8	EEG monitoring during software development. , 2020, , .		5
9	Instrument response function acquisition in reflectance geometry for time-resolved diffuse optical measurements. Biomedical Optics Express, 2020, 11, 240.	2.9	10
10	Time-Gated Single-Photon Detection in Time-Domain Diffuse Optics: A Review. Applied Sciences (Switzerland), 2020, 10, 1101.	2.5	17
11	Time-Resolved NIRS: a Clinical Study on Ischemic Stroke Patients. , 2020, , .		O
12	High Power Time Domain fNIRS Device. , 2020, , .		2
13	Multi-laboratory efforts for the standardization of performance assessment of diffuse optics instruments $\hat{a} \in \mathbb{C}^m$ the BitMap Exercise. , 2020, , .		1
14	Instrument response function acquisition in reflectance geometry for time-resolved diffuse optical measurements. Biomedical Optics Express, 2020, 11, 240.	2.9	0
15	NIRS-EMG for Clinical Applications: A Systematic Review. Applied Sciences (Switzerland), 2019, 9, 2952.	2.5	20
16	A Versatile Setup for Time-Resolved Functional Near Infrared Spectroscopy Based on Fast-Gated Single-Photon Avalanche Diode and on Four-Wave Mixing Laser. Applied Sciences (Switzerland), 2019, 9, 2366.	2.5	8
17	Time-domain near-infrared spectroscopy in acute ischemic stroke patients. Neurophotonics, 2019, 6, 1.	3.3	12
18	Preliminary vastus lateralis characterization with time domain near infrared spectroscopy during incremental cycle exercise., 2019,,.		1

#	Article	IF	CITATIONS
19	Time-resolved near infrared spectroscopy in ischemic stroke patients. , 2019, , .		0
20	Instrument response function acquisition in reflectance geometry for time-resolved diffuse optical measurements. , 2019, , .		1
21	TD-fNIRS for diagnosing glaucoma: a clinical pilot study. , 2019, , .		0
22	Time Domain Near Infrared Spectroscopy Device for Monitoring Muscle Oxidative Metabolism: Custom Probe and In Vivo Applications. Sensors, 2018, 18, 264.	3.8	33
23	Cerebral time domain-NIRS: reproducibility analysis, optical properties, hemoglobin species and tissue oxygen saturation in a cohort of adult subjects. Biomedical Optics Express, 2017, 8, 4987.	2.9	30
24	Probe-hosted silicon photomultipliers for time-domain functional near-infrared spectroscopy: phantom and <i>in vivo </i> tests. Neurophotonics, 2016, 3, 045004.	3.3	45
25	Photonics advancements in time-domain diffuse imaging: towards hand-held and wearable devices. , $2016, \ldots$		0
26	Effect of a thin superficial layer on the estimate of hemodynamic changes in a two-layer medium by time domain NIRS. Biomedical Optics Express, 2016, 7, 264.	2.9	18
27	Measurement of haemodynamics of exercising and non-exercising vastus lateralis muscle with hybrid diffuse optics. , 2016, , .		0
28	Time Domain Near Infrared Spectroscopy System for oxygen saturation assessment in stroke patients. , $2016, \ldots$		0
29	Design and construction of a solid switchable phantom for diffuse optical imaging. , 2015, , .		0
30	Effects of Increasing Neuromuscular Electrical Stimulation Current Intensity on Cortical Sensorimotor Network Activation: A Time Domain fNIRS Study. PLoS ONE, 2015, 10, e0131951.	2.5	33
31	Solid switchable phantom for diffuse optical imaging. , 2015, , .		0
32	Design and construction of a solid switchable phantom for diffuse optical imaging. , 2015, , .		0
33	Validation of time domain near infrared spectroscopy in muscle measurements: effect of a superficial layer., 2015,,.		0
34	Mechanically switchable solid inhomogeneous phantom for performance tests in diffuse imaging and spectroscopy. Journal of Biomedical Optics, 2015, 20, 121304.	2.6	45
35	Pulse transit time measured by photoplethysmography improves the accuracy of heart rate as a surrogate measure of cardiac output, stroke volume and oxygen uptake in response to graded exercise. Physiological Measurement, 2015, 36, 911-924.	2.1	10
36	Linear regression models and k-means clustering for statistical analysis of fNIRS data. Biomedical Optics Express, 2015, 6, 615.	2.9	16

#	Article	IF	CITATIONS
37	Validation of time domain near infrared spectroscopy in muscle measurements: effect of a superficial layer. , 2015, , .		0
38	Performance assessment of time-domain optical brain imagers, part 2: nEUROPt protocol. Journal of Biomedical Optics, 2014, 19, 086012.	2.6	85
39	Time domain functional NIRS imaging for human brain mapping. Neurolmage, 2014, 85, 28-50.	4.2	372
40	Neurophotonics: non-invasive optical techniques for monitoring brain functions. Functional Neurology, 2014, 29, 223-30.	1.3	13
41	Cerebral Cortex Activation Mapping upon Electrical Muscle Stimulation by 32-Channel Time-Domain Functional Near-Infrared Spectroscopy. Advances in Experimental Medicine and Biology, 2013, 789, 441-447.	1.6	7
42	Multi-channel medical device for time domain functional near infrared spectroscopy based on wavelength space multiplexing. Biomedical Optics Express, 2013, 4, 2231.	2.9	54
43	Method for the discrimination of superficial and deep absorption variations by time domain fNIRS. Biomedical Optics Express, 2013, 4, 2893.	2.9	52
44	A method for discriminating systemic and cortical hemodynamic changes by time domain fNIRS. Proceedings of SPIE, 2013, , .	0.8	1
45	From neurovascular coupling to neurovascular cascade: a study on neural, autonomic and vascular transients in attention. Physiological Measurement, 2012, 33, 1379-1397.	2.1	10
46	Integrated device for the measurement of systemic and local oxygen transport during physical exercise., 2012, 2012, 3760-3.		7
47	Brain and Muscle near Infrared Spectroscopy/Imaging Techniques. Journal of Near Infrared Spectroscopy, 2012, 20, 15-27.	1.5	43
48	Deep and surface hemodynamic signal from functional time resolved transcranial near infrared spectroscopy compared to skin flowmotion. Computers in Biology and Medicine, 2012, 42, 282-289.	7.0	41
49	A compact time-resolved system for near infrared spectroscopy based on wavelength space multiplexing. Review of Scientific Instruments, 2010, 81, 113101.	1.3	35
50	A compact time-resolved system for NIR spectroscopy. , 2009, , .		2