Ning Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6951368/publications.pdf

Version: 2024-02-01

759233 713466 23 468 12 21 citations h-index g-index papers 23 23 23 301 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Importance of cochlear health for implant function. Hearing Research, 2015, 322, 77-88.	2.0	105
2	Deactivating stimulation sites based on low-rate thresholds improves spectral ripple and speech reception thresholds in cochlear implant users. Journal of the Acoustical Society of America, 2017, 141, EL243-EL248.	1.1	53
3	Development and evaluation of methods for assessing tone production skills in Mandarin-speaking children with cochlear implants. Journal of the Acoustical Society of America, 2008, 123, 1653-1664.	1.1	34
4	Psychophysically based site selection coupled with dichotic stimulation improves speech recognition in noise with bilateral cochlear implants. Journal of the Acoustical Society of America, 2012, 132, 994-1008.	1.1	34
5	Characteristics of detection thresholds and maximum comfortable loudness levels as a function of pulse rate in human cochlear implant users. Hearing Research, 2012, 284, 25-32.	2.0	33
6	Effects of Site-Specific Level Adjustments on Speech Recognition With Cochlear Implants. Ear and Hearing, 2014, 35, 30-40.	2.1	31
7	Integration of Pulse Trains in Humans and Guinea Pigs with Cochlear Implants. JARO - Journal of the Association for Research in Otolaryngology, 2015, 16, 523-534.	1.8	31
8	Relationship between multipulse integration and speech recognition with cochlear implants. Journal of the Acoustical Society of America, 2014, 136, 1257-1268.	1.1	29
9	Monopolar Detection Thresholds Predict Spatial Selectivity of Neural Excitation in Cochlear Implants: Implications for Speech Recognition. PLoS ONE, 2016, 11, e0165476.	2.5	21
10	Evaluating multipulse integration as a neural-health correlate in human cochlear-implant users: Relationship to spatial selectivity. Journal of the Acoustical Society of America, 2016, 140, 1537-1547.	1.1	19
11	Pulse-rate discrimination deficit in cochlear implant users: is the upper limit of pitch peripheral or central?. Hearing Research, 2019, 371, 1-10.	2.0	13
12	Evaluating multipulse integration as a neural-health correlate in human cochlear-implant users: Relationship to forward-masking recovery. Journal of the Acoustical Society of America, 2016, 139, EL70-EL75.	1.1	12
13	Evaluating Multipulse Integration as a Neural-Health Correlate in Human Cochlear Implant Users: Effects of Stimulation Mode. JARO - Journal of the Association for Research in Otolaryngology, 2018, 19, 99-111.	1.8	11
14	Evaluating Multipulse Integration as a Neural-Health Correlate in Human Cochlear-Implant Users: Relationship to Psychometric Functions for Detection. Trends in Hearing, 2017, 21, 233121651769010.	1.3	10
15	Temporal Modulation Detection Depends on Sharpness of Spatial Tuning. JARO - Journal of the Association for Research in Otolaryngology, 2018, 19, 317-330.	1.8	7
16	Spectrotemporal Modulation Sensitivity in Cochlear-Implant and Normal-Hearing Listeners: Is the Performance Driven by Temporal or Spectral Modulation Sensitivity?. Trends in Hearing, 2020, 24, 233121652094838.	1.3	7
17	A behavioral method to estimate charge integration efficiency in cochlear implant users. Journal of Neuroscience Methods, 2020, 342, 108802.	2.5	5
18	Longitudinal effect of deactivating stimulation sites based on low-rate thresholds on speech recognition in cochlear implant users. International Journal of Audiology, 2019, 58, 587-597.	1.7	4

Ning Zhou

#	Article	IF	CITATION
19	Effect of pulse phase duration on forward masking and spread of excitation in cochlear implant listeners. PLoS ONE, 2020, 15, e0236179.	2.5	3
20	Forward masking patterns by low and high-rate stimulation in cochlear implant users: Differences in masking effectiveness and spread of neural excitation. Hearing Research, 2020, 389, 107921.	2.0	3
21	Sensitivity to Pulse Phase Duration as a Marker of Neural Health Across Cochlear Implant Recipients and Electrodes. JARO - Journal of the Association for Research in Otolaryngology, 2021, 22, 177-192.	1.8	2
22	Acoustic analysis of tone production in Mandarin-speaking bimodal cochlear implant users. JASA Express Letters, 2022, 2, 055201.	1.1	1
23	Perception of speaker sincerity in complex social interactions by cochlear implant users. PLoS ONE, 2022, 17, e0269652.	2.5	0