List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6951340/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Seed germination and vigor: ensuring crop sustainability in a changing climate. Heredity, 2022, 128, 450-459.	1.2	101
2	Ecological, (epi)genetic and physiological aspects of bet-hedging in angiosperms. Plant Reproduction, 2021, 34, 21-36.	1.3	26
3	Relationships of Brassica Seed Physical Characteristics with Germination Performance and Plant Blindness. Agriculture (Switzerland), 2021, 11, 220.	1.4	7
4	Desiccant drying prior to hermetic storage extends viability and reduces bruchid (Callosobruchus) Tj ETQq0 0 0 rg Research, 2021, 94, 101888.	gBT /Overlo 1.2	ock 10 Tf 50 5
5	Texture diversity in melon (Cucumis melo L.): Sensory and physical assessments. Postharvest Biology and Technology, 2020, 159, 111024.	2.9	27
6	Hydrothermal sensitivities of seed populations underlie fluctuations of dormancy states in an annual plant community. Ecology, 2020, 101, e02958.	1.5	27
7	A new halothermal time model describes seed germination responses to salinity across both sub- and supra-optimal temperatures. Acta Physiologiae Plantarum, 2020, 42, 1.	1.0	23
8	The dry chain: reducing postharvest losses and improving food safety in humid climates. , 2020, , 375-389.		11
9	Enhancing seed conservation in rural communities of Guatemala by implementing the dry chain concept. Biodiversity and Conservation, 2020, 29, 3997-4017.	1.2	8
10	Sensory, physicochemical and volatile compound analysis of short and long shelf-life melon (Cucumis) Tj ETQq0 C) 0 rgBT /0 1.8	verlock 10 1 20
11	Improving nutrition and immunity with dry chain and integrated pest management food technologies in LMICs. Lancet Planetary Health, The, 2020, 4, e259-e260.	5.1	1
12	Environmental resource deficit may drive the evolution of intraspecific trait variation in invasive plant populations. Oikos, 2019, 128, 171-184.	1.2	7
13	High-Resolution Analysis of the Efficiency, Heritability, and Editing Outcomes of CRISPR/Cas9-Induced Modifications of <i>NCED4</i> in Lettuce (<i>Lactuca sativa</i>). G3: Genes, Genomes, Genetics, 2018, 8, 1513-1521.	0.8	83
14	Potential impacts of desiccant-based drying and hermetic storage on the value chain for onion seeds in Nepal. Journal of Agribusiness in Developing and Emerging Economies, 2018, 8, 363-390.	1.2	6
15	The dry chain: Reducing postharvest losses and improving food safety in humid climates. Trends in Food Science and Technology, 2018, 71, 84-93.	7.8	174
16	Interpreting biological variation: seeds, populations and sensitivity thresholds. Seed Science Research, 2018, 28, 158-167.	0.8	28
17	Comprehensive Analysis of DWARF14-LIKE2 (DLK2) Reveals Its Functional Divergence from Strigolactone-Related Paralogs. Frontiers in Plant Science, 2017, 8, 1641.	1.7	61

¹⁸ Using Relative Humidity Indicator Paper to Measure Seed and Commodity Moisture Contents.
O.8 20

#	Article	IF	CITATIONS
19	Genetic Variation for Thermotolerance in Lettuce Seed Germination Is Associated with Temperature-Sensitive Regulation of <i>ETHYLENE RESPONSE FACTOR1</i> (<i>ERF1</i>). Plant Physiology, 2016, 170, 472-488.	2.3	39
20	Single-seed oxygen consumption measurements and population-based threshold models link respiration and germination rates under diverse conditions. Seed Science Research, 2016, 26, 199-221.	0.8	47
21	Rapid identification of lettuce seed germination mutants by bulked segregant analysis and whole genome sequencing. Plant Journal, 2016, 88, 345-360.	2.8	42
22	<i>DELAY OF GERMINATION1</i> (<i>DOG1</i>) regulates both seed dormancy and flowering time through microRNA pathways. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E2199-206.	3.3	147
23	The contribution of germination functional traits to population dynamics of a desert plant community. Ecology, 2016, 97, 250-261.	1.5	117
24	Molecular and Hormonal Regulation of Thermoinhibition of Seed Germination. , 2015, , 3-33.		16
25	Applying developmental threshold models to evolutionary ecology. Trends in Ecology and Evolution, 2015, 30, 66-77.	4.2	50
26	Seeds. , 2013, , .		745
27	Germination. , 2013, , 133-181.		88
28	Dormancy and the Control of Germination. , 2013, , 247-297.		28
29	Environmental Regulation of Dormancy and Germination. , 2013, , 299-339.		11
30	Expression of <i>9-cis-EPOXYCAROTENOID DIOXYGENASE4</i> Is Essential for Thermoinhibition of Lettuce Seed Germination but Not for Seed Development or Stress Tolerance Â. Plant Cell, 2013, 25, 884-900.	3.1	101
31	Stratification Requirements for Seed Dormancy Alleviation in a Wetland Weed. PLoS ONE, 2013, 8, e71457.	1.1	8
32	Populationâ€based threshold models describe weed germination and emergence patterns across varying temperature, moisture and oxygen conditions. Journal of Applied Ecology, 2012, 49, 1225-1236.	1.9	33
33	Oxygen interacts with priming, moisture content and temperature to affect the longevity of lettuce and onion seeds. Seed Science Research, 2011, 21, 175-185.	0.8	36
34	Gene Flow between <i>Gossypium hirsutum</i> L. and <i>Gossypium barbadense</i> L. is Asymmetric. Crop Science, 2011, 51, 298-305.	0.8	7
35	A gene encoding an abscisic acid biosynthetic enzyme (LsNCED4) collocates with the high temperature germination locus Htg6.1 in lettuce (Lactuca sp.). Theoretical and Applied Genetics, 2011, 122, 95-108.	1.8	59
36	A genetic locus and gene expression patterns associated with the priming effect on lettuce seed germination at elevated temperatures. Plant Molecular Biology, 2010, 73, 105-118.	2.0	41

#	Article	IF	CITATIONS
37	Quantitative trait loci associated with longevity of lettuce seeds under conventional and controlled deterioration storage conditions. Journal of Experimental Botany, 2010, 61, 4423-4436.	2.4	104
38	Shang Fa Yang: Pioneer in plant ethylene biochemistry. Plant Science, 2008, 175, 2-7.	1.7	17
39	Quantifying the sensitivity of barley seed germination to oxygen, abscisic acid, and gibberellin using a population-based threshold model. Journal of Experimental Botany, 2008, 59, 335-347.	2.4	53
40	Genetic Variation for Lettuce Seed Thermoinhibition Is Associated with Temperature-Sensitive Expression of Abscisic Acid, Gibberellin, and Ethylene Biosynthesis, Metabolism, and Response Genes Â. Plant Physiology, 2008, 148, 926-947.	2.3	137
41	Quantifying the oxygen sensitivity of seed germination using a population-based threshold model. Seed Science Research, 2007, 17, 33-43.	0.8	40
42	Compliance costs for regulatory approval of new biotech crops. Nature Biotechnology, 2007, 25, 509-511.	9.4	157
43	Primed Lettuce Seeds Exhibit Increased Sensitivity to Moisture Content During Controlled Deterioration. Hortscience: A Publication of the American Society for Hortcultural Science, 2007, 42, 1436-1439.	0.5	18
44	The Economics of Horticultural Biotechnology. Journal of Crop Improvement, 2006, 18, 413-431.	0.9	11
45	Threshold models applied to seed germination ecology. New Phytologist, 2005, 165, 338-341.	3.5	52
46	Reply to Regulatory regimes for transgenic crops. Nature Biotechnology, 2005, 23, 787-789.	9.4	15
47	Regulating transgenic crops sensibly: lessons from plant breeding, biotechnology and genomics. Nature Biotechnology, 2005, 23, 439-444.	9.4	235
48	Quantitative trait loci associated with seed and seedling traits in Lactuca. Theoretical and Applied Genetics, 2005, 111, 1365-1376.	1.8	81
49	The self-incompatibility locus (S) and quantitative trait loci for self-pollination and seed dormancy in sunflower. Theoretical and Applied Genetics, 2005, 111, 619-629.	1.8	95
50	Pollenâ€Mediated Gene Flow in California Cotton Depends on Pollinator Activity. Crop Science, 2005, 45, 1565-1570.	0.8	79
51	The case for strategic international alliances to harness nutritional genomics for public and personal health. British Journal of Nutrition, 2005, 94, 623-632.	1.2	137
52	Hydrothermal time analysis of seed dormancy in true (botanical) potato seeds. Seed Science Research, 2005, 15, 77-88.	0.8	57
53	Differential response of PCNA and Cdk-A proteins and associated kinase activities to benzyladenine and abscisic acid during maize seed germination. Journal of Experimental Botany, 2005, 56, 515-523.	2.4	39
54	Nomenclature for members of the expansin superfamily of genes and proteins. Plant Molecular Biology, 2004, 55, 311-314.	2.0	242

#	Article	IF	CITATIONS
55	The public–private structure of intellectual property ownership in agricultural biotechnology. Nature Biotechnology, 2003, 21, 989-995.	9.4	128
56	Expression of a GALACTINOL SYNTHASE Gene in Tomato Seeds Is Up-Regulated before Maturation Desiccation and Again after Imbibition whenever Radicle Protrusion Is Prevented. Plant Physiology, 2003, 131, 1347-1359.	2.3	144
57	Abscisic Acid and Gibberellin Differentially Regulate Expression of Genes of the SNF1-Related Kinase Complex in Tomato Seeds. Plant Physiology, 2003, 132, 1560-1576.	2.3	77
58	Class I Chitinase and β-1,3-Glucanase Are Differentially Regulated by Wounding, Methyl Jasmonate, Ethylene, and Gibberellin in Tomato Seeds and Leaves. Plant Physiology, 2003, 133, 263-273.	2.3	122
59	A gibberellinâ€regulated xyloglucan endotransglycosylase gene is expressed in the endosperm cap during tomato seed germination. Journal of Experimental Botany, 2002, 53, 215-223.	2.4	123
60	Applications of hydrothermal time to quantifying and modeling seed germination and dormancy. Weed Science, 2002, 50, 248-260.	0.8	421
61	Early germination events $\hat{a} \in $ a personal perspective. New Phytologist, 2001, 149, 163-164.	3.5	Ο
62	Class I β-1,3-Glucanase and Chitinase Are Expressed in the Micropylar Endosperm of Tomato Seeds Prior to Radicle Emergence. Plant Physiology, 2001, 126, 1299-1313.	2.3	123
63	A Germination-Specific Endo-β-Mannanase Gene Is Expressed in the Micropylar Endosperm Cap of Tomato Seeds. Plant Physiology, 2000, 123, 1235-1246.	2.3	181
64	Expression of an Expansin Is Associated with Endosperm Weakening during Tomato Seed Germination. Plant Physiology, 2000, 124, 1265-1274.	2.3	211
65	Vacuolar H+-ATPase Is Expressed in Response to Gibberellin during Tomato Seed Germination. Plant Physiology, 1999, 121, 1339-1347.	2.3	39
66	Expression of a Polygalacturonase Associated with Tomato Seed Germination. Plant Physiology, 1999, 121, 419-428.	2.3	89
67	A Gel Diffusion Assay for Quantification of Pectin Methylesterase Activity. Analytical Biochemistry, 1998, 264, 149-157.	1.1	101
68	Callose Deposition Is Responsible for Apoplastic Semipermeability of the Endosperm Envelope of Muskmelon Seeds1. Plant Physiology, 1998, 118, 83-90.	2.3	70
69	Using Hydrotime and ABA-time Models to Quantify Seed Quality of Brassicas during Development. Journal of the American Society for Horticultural Science, 1998, 123, 692-699.	0.5	24
70	Hydrothermal time analysis of tomato seed germination at suboptimal temperature and reduced water potential. Seed Science Research, 1994, 4, 71-80.	0.8	117
71	Relationship between accumulated hydrothermal time during seed priming and subsequent seed germination rates. Seed Science Research, 1994, 4, 63-69.	0.8	36
72	Water relations of lettuce seed thermoinhibition. II. Ethylene and endosperm effects on base water potential. Seed Science Research, 1994, 4, .	0.8	29

#	Article	IF	CITATIONS
73	A Population-based Threshold Model Describing the Relationship Between Germination Rates and Seed Deterioration. Journal of Experimental Botany, 1993, 44, 1225-1234.	2.4	42
74	Expression of "Dehydrin-Like―Proteins in Embryos and Seedlings of <i>Zizania palustris</i> and <i>Oryza sativa</i> during Dehydration. Plant Physiology, 1992, 99, 488-494.	2.3	82
75	Quantitative Models Characterizing Seed Germination Responses to Abscisic Acid and Osmoticum. Plant Physiology, 1992, 98, 1057-1068.	2.3	111
76	Imbibitional Damage and Desiccation Tolerance of Wild Rice (Zizania palustris) Seeds. Journal of Experimental Botany, 1992, 43, 747-757.	2.4	55
77	Prehydration and Priming Treatments that Advance Germination also Increase the Rate of Deterioration of Lettuce Seeds. Journal of Experimental Botany, 1992, 43, 307-317.	2.4	134
78	Seed Priming Influence on Germination and Emergence of Pepper Seed Lots. Crop Science, 1990, 30, 718-721.	0.8	86
79	Water Relations of Seed Development and Germination in Muskmelon (<i>Cucumis melo</i> L.). Plant Physiology, 1990, 92, 1029-1037.	2.3	131
80	A Water Relations Analysis of Seed Germination Rates. Plant Physiology, 1990, 94, 840-849.	2.3	367
81	Effects of Priming and Endosperm Integrity on Seed Germination Rates of Tomato Genotypes. Journal of Experimental Botany, 1990, 41, 1431-1439.	2.4	84
82	Effects of Priming and Endosperm Integrity on Seed Germination Rates of Tomato Genotypes. Journal of Experimental Botany, 1990, 41, 1441-1453.	2.4	130
83	Water Relations of Seed Development and Germination in Muskmelon (Cucumis meloL.). Journal of Experimental Botany, 1989, 40, 1355-1362.	2.4	44
84	The Effects of Priming and Ageing on Seed Vigour in Tomato. Journal of Experimental Botany, 1989, 40, 599-607.	2.4	88
85	The Effects of Priming and Ageing on Resistance to Deterioration of Tomato Seeds. Journal of Experimental Botany, 1989, 40, 593-598.	2.4	66
86	Water Relations of Seed Development and Germination in Muskmelon (<i>Cucumis melo</i> L.). Plant Physiology, 1988, 86, 406-411.	2.3	58
87	Seed and Soil Treatments to Improve Emergence of Muskmelon from Cold or Crusted Soils. Crop Science, 1988, 28, 1001-1005.	0.8	24
88	Insensitivity of the <i>Diageotropica</i> Tomato Mutant to Auxin. Plant Physiology, 1986, 82, 713-717.	2.3	132
89	Water Relations and Growth of the flacca Tomato Mutant in Relation to Abscisic Acid. Plant Physiology, 1983, 72, 251-255.	2.3	58
90	Effects of Soil Flooding on Leaf Gas Exchange of Tomato Plants. Plant Physiology, 1983, 73, 475-479.	2.3	113

6

#	Article	IF	CITATIONS
91	Gas Exchange, Stomatal Behavior, and δ ¹³ C Values of the <i>flacca</i> Tomato Mutant in Relation to Abscisic Acid. Plant Physiology, 1983, 72, 245-250.	2.3	93
92	Involvement of Plant Growth Substances in the Alteration of Leaf Gas Exchange of Flooded Tomato Plants. Plant Physiology, 1983, 73, 480-483.	2.3	83
93	Stomatal Behavior and Water Relations of Waterlogged Tomato Plants. Plant Physiology, 1982, 70, 1508-1513.	2.3	218
94	Inhibition of Ethylene Synthesis in Tomato Plants Subjected to Anaerobic Root Stress. Plant Physiology, 1982, 70, 1503-1507.	2.3	82
95	Stress-induced Ethylene Production in the Ethylene-requiring Tomato Mutant Diageotropica. Plant Physiology, 1980, 65, 327-330.	2.3	69
96	Xylem Transport of 1-Aminocyclopropane-1-carboxylic Acid, an Ethylene Precursor, in Waterlogged Tomato Plants. Plant Physiology, 1980, 65, 322-326.	2.3	366
97	Effects of Root Anaerobiosis on Ethylene Production, Epinasty, and Growth of Tomato Plants. Plant Physiology, 1978, 61, 506-509.	2.3	85
98	Modeling of Seed Dormancy. , 0, , 72-112.		53
99	Genetic Aspects of Seed Dormancy. , 0, , 113-132.		20
100	A Merging of Paths: Abscisic Acid and Hormonal Cross-Talk in the Control of Seed Dormancy Maintenance and Alleviation. , 0, , 176-223.		30
101	Mechanisms and Genes Involved in GerminationSensu Stricto. , 0, , 264-304.		46
102	Sugar and Abscisic Acid Regulation of Germination and Transition to Seedling Growth. , 0, , 305-327.		7
103	Definitions and Hypotheses of Seed Dormancy. , 0, , 50-71.		53
104	Hydrothermal time analysis of tomato seed germination responses to priming treatments. , 0, .		17