Christophe Crévisy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/69513/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multicomponent Synthesis of Unsymmetrical Unsaturated Nâ€Heterocyclic Carbene Precursors and Their Related Transitionâ€Metal Complexes. Angewandte Chemie - International Edition, 2013, 52, 14103-14107.	7.2	70
2	Copperâ€Catalyzed Asymmetric Conjugate Addition of Dimethylzinc to Acylâ€ <i>N</i> â€methylimidazole Michael Acceptors: a Powerful Synthetic Platform. Angewandte Chemie - International Edition, 2015, 54, 11830-11834.	7.2	58
3	Multicomponent Synthesis of Chiral Bidentate Unsymmetrical Unsaturated <i>N</i> â€Heterocyclic Carbenes: Copperâ€Catalyzed Asymmetric CC Bond Formation. Chemistry - A European Journal, 2015, 21, 993-997.	1.7	54
4	Copper-catalyzed asymmetric conjugate addition of organometallic reagents to extended Michael acceptors. Beilstein Journal of Organic Chemistry, 2015, 11, 2418-2434.	1.3	52
5	A Fastâ€Initiating Ionically Tagged Ruthenium Complex: A Robust Supported Preâ€catalyst for Batchâ€Process and Continuousâ€Flow Olefin Metathesis. Chemistry - A European Journal, 2012, 18, 16369-16382.	1.7	47
6	Readily Accessible Unsymmetrical Unsaturated 2,6-Diisopropylphenyl N-Heterocyclic Carbene Ligands. Applications in Enantioselective Catalysis. Journal of Organic Chemistry, 2017, 82, 1880-1887.	1.7	45
7	The debut of chiral cyclic (alkyl)(amino)carbenes (CAACs) in enantioselective catalysis. Chemical Science, 2019, 10, 7807-7811.	3.7	41
8	From Prochiral N-Heterocyclic Carbenes to Optically Pure Metal Complexes: New Opportunities in Asymmetric Catalysis. Journal of the American Chemical Society, 2020, 142, 93-98.	6.6	39
9	Optically Pure <i>C</i> ₁ -Symmetric Cyclic(alkyl)(amino)carbene Ruthenium Complexes for Asymmetric Olefin Metathesis. Journal of the American Chemical Society, 2020, 142, 19895-19901.	6.6	34
10	Copperâ€Catalyzed Asymmetric Conjugate Addition of Dimethylzinc to Acylâ€ <i>N</i> â€methylimidazole Michael Acceptors: Scope, Limitations and Iterative Reactions. Advanced Synthesis and Catalysis, 2016, 358, 2519-2540.	2.1	29
11	Continuous Flow <i>Z</i> tereoselective Olefin Metathesis: Development and Applications in the Synthesis of Pheromones and Macrocyclic Odorant Molecules**. Angewandte Chemie - International Edition, 2021, 60, 19685-19690.	7.2	24
12	Hybrids of cationic [4]helicene and N-heterocyclic carbene as ligands for complexes exhibiting (chir)optical properties in the far red spectral window. Chemical Communications, 2021, 57, 3793-3796.	2.2	17
13	A kinetic resolution strategy for the synthesis of chiral octahedral NHC–iridium(<scp>iii</scp>) catalysts. Chemical Communications, 2019, 55, 6058-6061.	2.2	16
14	Copper-catalyzed enantioselective conjugate addition of organometallic reagents to challenging Michael acceptors. Beilstein Journal of Organic Chemistry, 2020, 16, 212-232.	1.3	16
15	Copper-Catalyzed Asymmetric Conjugate Additions of Bis(pinacolato)diboron and Dimethylzinc to Acyl- <i>N</i> -methylimidazole Michael Acceptors: A Highly Stereoselective Unified Strategy for 1,3,5, <i>n</i>) (OH, Me) Motif Synthesis. Organic Letters, 2019, 21, 1872-1876.	2.4	15
16	Bleaching Earths as Powerful Additives for Ru atalyzed Selfâ€Metathesis of Nonâ€Refined Methyl Oleate at Pilot Scale. Chemistry - A European Journal, 2017, 23, 12729-12734.	1.7	11
17	Direct Immobilization of Ruâ€Based Catalysts on Silica: Hydrogen Bonds as Non ovalent Interactions for Recycling in Metathesis Reactions. ChemCatChem, 2015, 7, 2493-2500.	1.8	10
18	Continuous Flow Z â€Stereoselective Olefin Metathesis: Development and Applications in the Synthesis of Pheromones and Macrocyclic Odorant Molecules**. Angewandte Chemie, 2021, 133, 19837-19842.	1.6	5