Stephen Y Chan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6950930/publications.pdf

Version: 2024-02-01

57758 53230 7,911 103 44 85 citations h-index g-index papers 105 105 105 10690 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Single-cell RNA sequencing profiling of mouse endothelial cells in response to pulmonary arterial hypertension. Cardiovascular Research, 2022, 118, 2519-2534.	3.8	45
2	Improved hospitalization rates in a specialty center for heart failure with preserved ejection fraction and pulmonary hypertension. Pulmonary Circulation, 2022, 12, .	1.7	1
3	Endothelial Senescence: A New Age in Pulmonary Hypertension. Circulation Research, 2022, 130, 928-941.	4.5	20
4	miRNA/mRNA co-profiling identifies the miR-200 family as a central regulator of SMC quiescence. IScience, 2022, 25, 104169.	4.1	6
5	Defenestrated endothelium delays liver-directed gene transfer in hemophilia A mice. Blood Advances, 2022, 6, 3729-3734.	5.2	2
6	VEGF Receptor 1 Promotes Hypoxia-Induced Hematopoietic Progenitor Proliferation and Differentiation. Frontiers in Immunology, 2022, 13, .	4.8	6
7	A dUTY to Protect: Addressing "Y―We See Sex Differences in Pulmonary Hypertension. American Journal of Respiratory and Critical Care Medicine, 2022, , .	5. 6	0
8	Loss of Amphiregulin drives inflammation and endothelial apoptosis in pulmonary hypertension. Life Science Alliance, 2022, 5, e202101264.	2.8	6
9	Ranolazine Improves Right Ventricular Function in Patients With Precapillary Pulmonary Hypertension: Results From a Double-Blind, Randomized, Placebo-Controlled Trial. Journal of Cardiac Failure, 2021, 27, 253-257.	1.7	22
10	Increased Mortality in Patients With Preoperative and Persistent Postoperative Pulmonary Hypertension Undergoing Mitral Valve Surgery for Mitral Regurgitation: A Cohort Study. Journal of the American Heart Association, 2021, 10, e018394.	3.7	6
11	Matrix stiffening induces a pathogenic QKI-miR-7-SRSF1 signaling axis in pulmonary arterial endothelial cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2021, 320, L726-L738.	2.9	13
12	Frataxin deficiency promotes endothelial senescence in pulmonary hypertension. Journal of Clinical Investigation, 2021, 131, .	8.2	38
13	Simultaneous Pharmacologic Inhibition of Yesâ€Associated Protein 1 and Glutaminase 1 via Inhaled Poly(Lacticâ€coâ€Glycolic) Acid–Encapsulated Microparticles Improves Pulmonary Hypertension. Journal of the American Heart Association, 2021, 10, e019091.	3.7	16
14	Mechano-induced cell metabolism promotes microtubule glutamylation to force metastasis. Cell Metabolism, 2021, 33, 1342-1357.e10.	16.2	66
15	Metabolic Syndrome Mediates ROS-miR-193b-NFYA–Dependent Downregulation of Soluble Guanylate Cyclase and Contributes to Exercise-Induced Pulmonary Hypertension in Heart Failure With Preserved Ejection Fraction. Circulation, 2021, 144, 615-637.	1.6	44
16	A systemsâ€level study reveals hostâ€ŧargeted repurposable drugs against SARSâ€CoVâ€2 infection. Molecular Systems Biology, 2021, 17, e10239.	7.2	22
17	Modeling of dilated cardiomyopathy by establishment of isogenic human iPSC lines carrying phospholamban C25T (R9C) mutation (UPITTi002-A-1) using CRISPR/Cas9 editing. Stem Cell Research, 2021, 56, 102544.	0.7	4
18	Evolving Schema for Employing Network Biology Approaches to Understand Pulmonary Hypertension. Advances in Experimental Medicine and Biology, 2021, 1303, 57-69.	1.6	0

#	Article	IF	CITATIONS
19	Interleukin-6 mediates neutrophil mobilization from bone marrow in pulmonary hypertension. Cellular and Molecular Immunology, 2021, 18, 374-384.	10.5	36
20	Computational repurposing of therapeutic small molecules from cancer to pulmonary hypertension. Science Advances, 2021, 7, eabh3794.	10.3	16
21	NFU1, Iron-Sulfur Biogenesis, and Pulmonary Arterial Hypertension: A (Metabolic) Shift in Our Thinking. American Journal of Respiratory Cell and Molecular Biology, 2020, 62, 136-138.	2.9	9
22	Activation of the Metabolic Master Regulator PPARÎ ³ : A Potential PIOneering Therapy for Pulmonary Arterial Hypertension. American Journal of Respiratory Cell and Molecular Biology, 2020, 62, 143-156.	2.9	26
23	Lower DLco% identifies exercise pulmonary hypertension in patients with parenchymal lung disease referred for dyspnea. Pulmonary Circulation, 2020, 10, 1-11.	1.7	12
24	A New "TYK―Tok Era for the Study of Long Noncoding RNAs in Pulmonary Hypertension. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 1339-1341.	5.6	1
25	Long Range Endocrine Delivery of Circulating miR-210 to Endothelium Promotes Pulmonary Hypertension. Circulation Research, 2020, 127, 677-692.	4.5	21
26	Transcriptional profiling of lung cell populations in idiopathic pulmonary arterial hypertension. Pulmonary Circulation, 2020, 10 , $1-15$.	1.7	64
27	Outcomes of Pulmonary Arterial Hypertension Are Improved in a SpecialtyÂCare Center. Chest, 2020, 158, 330-340.	0.8	18
28	Update in Pulmonary Vascular Diseases and Right Ventricular Dysfunction 2019. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 22-28.	5.6	5
29	Evolving systems biology approaches to understanding nonâ€coding RNAs in pulmonary hypertension. Journal of Physiology, 2019, 597, 1199-1208.	2.9	3
30	Inhibition of CHK 1 (Checkpoint Kinase 1) Elicits Therapeutic Effects in Pulmonary Arterial Hypertension. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 1667-1681.	2.4	40
31	The molecular rationale for therapeutic targeting of glutamine metabolism in pulmonary hypertension. Expert Opinion on Therapeutic Targets, 2019, 23, 511-524.	3.4	19
32	Distinct plasma gradients of microRNAâ€204Âin the pulmonary circulation of patients suffering from WHO Groups I and II pulmonary hypertension. Pulmonary Circulation, 2019, 9, 1-12.	1.7	17
33	BOLA (BolA Family Member 3) Deficiency Controls Endothelial Metabolism and Glycine Homeostasis in Pulmonary Hypertension. Circulation, 2019, 139, 2238-2255.	1.6	54
34	The Search for Disease-Modifying Therapies in Pulmonary Hypertension. Journal of Cardiovascular Pharmacology and Therapeutics, 2019, 24, 334-354.	2.0	22
35	A network-based approach to uncover microRNA-mediated disease comorbidities and potential pathobiological implications. Npj Systems Biology and Applications, 2019, 5, 41.	3.0	24
36	Systems Analysis of the Human Pulmonary Arterial Hypertension Lung Transcriptome. American Journal of Respiratory Cell and Molecular Biology, 2019, 60, 637-649.	2.9	76

#	Article	IF	CITATIONS
37	Tumor-Stroma Mechanics Coordinate Amino Acid Availability to Sustain Tumor Growth and Malignancy. Cell Metabolism, 2019, 29, 124-140.e10.	16.2	232
38	YAPping About Glutaminolysis in Hepatic Fibrosis. Gastroenterology, 2018, 154, 1231-1233.	1.3	6
39	Inflammatory Macrophage Expansion in Pulmonary Hypertension Depends upon Mobilization of Blood-Borne Monocytes. Journal of Immunology, 2018, 200, 3612-3625.	0.8	105
40	Endothelial dysfunction in pulmonary arterial hypertension: an evolving landscape (2017 Grover) Tj ETQq0 0 0 r	gBT ₁ /Overl	ock 10 Tf 50 (
41	Update in Pulmonary Vascular Disease 2016 and 2017. American Journal of Respiratory and Critical Care Medicine, 2018, 198, 13-23.	5.6	6
42	Rationale and design of the ranolazine PH–RV study: a multicentred randomised and placebo-controlled study of ranolazine to improve RV function in patients with non-group 2 pulmonary hypertension. Open Heart, 2018, 5, e000736.	2.3	12
43	Outcomes of persistent pulmonary hypertension following transcatheter aortic valve replacement. Heart, 2018, 104, 821-827.	2.9	47
44	Longitudinal Evaluation of Pulmonary Arterial Hypertension in a Rhesus Macaque (Macaca mulatta) Model of HIV Infection. Comparative Medicine, 2018, 68, 461-473.	1.0	10
45	Factors Associated with Heritable Pulmonary Arterial Hypertension Exert Convergent Actions on the miR-130/301-Vascular Matrix Feedback Loop. International Journal of Molecular Sciences, 2018, 19, 2289.	4.1	24
46	Atrial arrhythmias are associated with increased mortality in pulmonary arterial hypertension. Pulmonary Circulation, 2018, 8, 1-9.	1.7	32
47	A pro-con debate: current controversies in PAH pathogenesis at the American Thoracic Society International Conference in 2017. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 315, L502-L516.	2.9	13
48	Pulmonary Arterial Stiffness: An Early and Pervasive Driver of Pulmonary Arterial Hypertension. Frontiers in Medicine, 2018, 5, 204.	2.6	34
49	KBase: The United States Department of Energy Systems Biology Knowledgebase. Nature Biotechnology, 2018, 36, 566-569.	17.5	955
50	Specific circulating microRNAs display dose-dependent responses to variable intensity and duration of endurance exercise. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 315, H273-H283.	3.2	52
51	Hemodynamic and Histopathologic Benefits of Early Treatment with Macitentan in a Rat Model of Pulmonary Arterial Hypertension. Korean Circulation Journal, 2018, 48, 839.	1.9	9
52	Role of extracellular matrix in the pathogenesis of pulmonary arterial hypertension. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 315, H1322-H1331.	3.2	137
53	Mitochondrial metabolism in pulmonary hypertension: beyond mountains there are mountains. Journal of Clinical Investigation, 2018, 128, 3704-3715.	8.2	104
54	Enhancing Insights into Pulmonary Vascular Disease through a Precision Medicine Approach. A Joint NHLBI†Cardiovascular Medical Research and Education Fund Workshop Report. American Journal of Respiratory and Critical Care Medicine, 2017, 195, 1661-1670.	5.6	59

#	Article	IF	CITATIONS
55	p62/SQSTM1 Cooperates with Hyperactive mTORC1 to Regulate Glutathione Production, Maintain Mitochondrial Integrity, and Promote Tumorigenesis. Cancer Research, 2017, 77, 3255-3267.	0.9	49
56	Comprehensive Right-Sided Assessment for Transcatheter Aortic Valve Replacement Risk Stratification: Time for a Change. Journal of the American Society of Echocardiography, 2017, 30, 47-51.	2.8	26
57	Human Endogenous Retrovirus K and Pulmonary Arterial Hypertension. Circulation, 2017, 136, 1936-1938.	1.6	1
58	Reply: Transforming Growth Factor β1– and Bone Morphogenetic Protein 2/PPARγ–regulated MicroRNAs in Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2017, 196, 1228-1229.	5.6	0
59	T <scp>ranslational</scp> A <scp>dvances</scp> <scp>in</scp> <scp>the</scp> F <scp>ield</scp> <scp> eld</scp> in H <scp>ypertension</scp> .Translating MicroRNA Biology in Pulmonary Hypertension. It Will Take More Than "miR―Words. American Journal of Respiratory and Critical Care Medicine, 2017, 195, 167-178.	5.6	70
60	Metabolic dysfunction in pulmonary hypertension: from basic science to clinical practice. European Respiratory Review, 2017, 26, 170094.	7.1	60
61	Emerging Metabolic Therapies in Pulmonary Arterial Hypertension. Journal of Clinical Medicine, 2017, 6, 43.	2.4	40
62	Discerning functional hierarchies of microRNAs in pulmonary hypertension. JCI Insight, 2017, 2, e91327.	5.0	53
63	Mitochondrial and Metabolic Drivers of Pulmonary Vascular Endothelial Dysfunction in Pulmonary Hypertension. Advances in Experimental Medicine and Biology, 2017, 967, 373-383.	1.6	38
64	Rapamycin-induced miR-21 promotes mitochondrial homeostasis and adaptation in mTORC1 activated cells. Oncotarget, 2017, 8, 64714-64727.	1.8	18
65	Integration of Complex Data Sources to Provide Biologic Insight into Pulmonary Vascular Disease (2015 Grover Conference Series). Pulmonary Circulation, 2016, 6, 251-260.	1.7	11
66	Influence of statins on distinct circulating microRNAs during prolonged aerobic exercise. Journal of Applied Physiology, 2016, 120, 711-720.	2.5	38
67	Negligible uptake and transfer of diet-derived pollen microRNAs in adult honey bees. RNA Biology, 2016, 13, 109-118.	3.1	39
68	Vascular stiffness mechanoactivates YAP/TAZ-dependent glutaminolysis to drive pulmonary hypertension. Journal of Clinical Investigation, 2016, 126, 3313-3335.	8.2	303
69	A YAP/TAZ-miR-130/301 molecular circuit exerts systems-level control of fibrosis in a network of human diseases and physiologic conditions. Scientific Reports, 2015, 5, 18277.	3.3	58
70	Genetic and hypoxic alterations of the micro <scp>RNA</scp> â€210― <scp>ISCU</scp> 1/2 axis promote iron–sulfur deficiency and pulmonary hypertension. EMBO Molecular Medicine, 2015, 7, 695-713.	6.9	120
71	Matrix Remodeling Promotes Pulmonary Hypertension through Feedback Mechanoactivation of the YAP/TAZ-miR-130/301 Circuit. Cell Reports, 2015, 13, 1016-1032.	6.4	193
72	The biology of circulating micro <scp>RNA</scp> s in cardiovascular disease. European Journal of Clinical Investigation, 2015, 45, 860-874.	3.4	69

#	Article	IF	CITATIONS
73	The MicroRNA-130/301 Family Controls Vasoconstriction in Pulmonary Hypertension. Journal of Biological Chemistry, 2015, 290, 2069-2085.	3.4	80
74	A Novel Minimally-Invasive Method to Sample Human Endothelial Cells for Molecular Profiling. PLoS ONE, 2015, 10, e0118081.	2.5	8
75	Investigating pulmonary arterial hypertension from "stem―to stern. Focus on "ldentification of a common Wnt-associated genetic signature across multiple cell types in pulmonary arterial hypertension― American Journal of Physiology - Cell Physiology, 2014, 307, C413-C414.	4.6	1
76	Upregulation of Steroidogenic Acute Regulatory Protein by Hypoxia Stimulates Aldosterone Synthesis in Pulmonary Artery Endothelial Cells to Promote Pulmonary Vascular Fibrosis. Circulation, 2014, 130, 168-179.	1.6	53
77	Systems-level regulation of microRNA networks by miR-130/301 promotes pulmonary hypertension. Journal of Clinical Investigation, 2014, 124, 3514-3528.	8.2	182
78	Rapid upregulation and clearance of distinct circulating microRNAs after prolonged aerobic exercise. Journal of Applied Physiology, 2014, 116, 522-531.	2.5	166
79	An Argonaute 2 switch regulates circulating miR-210 to coordinate hypoxic adaptation across cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 2528-2542.	4.1	48
80	Hypoxia: A master regulator of microRNA biogenesis and activity. Free Radical Biology and Medicine, 2013, 64, 20-30.	2.9	245
81	The Xin repeat-containing protein, mXin \hat{l}^2 , initiates the maturation of the intercalated discs during postnatal heart development. Developmental Biology, 2013, 374, 264-280.	2.0	31
82	Testosterone administration inhibits hepcidin transcription and is associated with increased iron incorporation into red blood cells. Aging Cell, 2013, 12, 280-291.	6.7	147
83	Analysis of MicroRNA Niches: Techniques to Measure Extracellular MicroRNA and Intracellular MicroRNA In Situ. Methods in Molecular Biology, 2013, 1024, 157-172.	0.9	17
84	Ineffective delivery of diet-derived microRNAs to recipient animal organisms. RNA Biology, 2013, 10, 1107-1116.	3.1	198
85	Metabolic dysfunction in pulmonary hypertension: the expanding relevance of the <scp>W</scp> arburg effect. European Journal of Clinical Investigation, 2013, 43, 855-865.	3.4	85
86	MicroRNA in the Diseased Pulmonary Vasculature: Implications for the Basic Scientist and Clinician. Journal of the Korean Society of Hypertension, 2013, 19, 1.	0.2	2
87	Pulmonary Arterial Hypertension. , 2013, , 667-686.		4
88	Aldosterone Inactivates the Endothelin-B Receptor via a Cysteinyl Thiol Redox Switch to Decrease Pulmonary Endothelial Nitric Oxide Levels and Modulate Pulmonary Arterial Hypertension. Circulation, 2012, 126, 963-974.	1.6	171
89	Holding Our Breath: The Emerging and Anticipated Roles of microRNA in Pulmonary Hypertension. Pulmonary Circulation, 2012, 2, 278-290.	1.7	53
90	Deciphering the molecular basis of human cardiovascular disease through network biology. Current Opinion in Cardiology, 2012, 27, 202-209.	1.8	30

#	Article	IF	CITATIONS
91	MicroRNA-21 Integrates Pathogenic Signaling to Control Pulmonary Hypertension. Circulation, 2012, 125, 1520-1532.	1.6	246
92	The Emerging Paradigm of Network Medicine in the Study of Human Disease. Circulation Research, 2012, 111, 359-374.	4.5	186
93	Hypoxamirs in Pulmonary Hypertension: Breathing New Life into Pulmonary Vascular Research. Cardiovascular Diagnosis and Therapy, 2012, 2, 200-212.	1.7	21
94	Pulmonary Vascular Disease Related to Hemodynamic Stress in the Pulmonary Circulation. , 2011, 1, 123-139.		4
95	Dynamic regulation of circulating microRNA during acute exhaustive exercise and sustained aerobic exercise training. Journal of Physiology, 2011, 589, 3983-3994.	2.9	366
96	MicroRNA-210: A unique and pleiotropic hypoxamir. Cell Cycle, 2010, 9, 1072-1083.	2.6	320
97	MicroRNA-210 Controls Mitochondrial Metabolism during Hypoxia by Repressing the Iron-Sulfur Cluster Assembly Proteins ISCU1/2. Cell Metabolism, 2009, 10, 273-284.	16.2	588
98	Pathogenic mechanisms of pulmonary arterial hypertension. Journal of Molecular and Cellular Cardiology, 2008, 44, 14-30.	1.9	229
99	Folate Receptor-α Is a Cofactor for Cellular Entry by Marburg and Ebola Viruses. Cell, 2001, 106, 117-126.	28.9	200
100	Viral Entry through CXCR4 Is a Pathogenic Factor and Therapeutic Target in Human Immunodeficiency Virus Type 1 Disease. Journal of Virology, 2000, 74, 184-192.	3.4	65
101	Differential induction of cellular detachment by envelope glycoproteins of Marburg and Ebola (Zaire) viruses. Journal of General Virology, 2000, 81, 2155-2159.	2.9	78
102	A trans-receptor mechanism for infection of CD4-negative cells by human immunodeficiency virus type 1. Current Biology, 1999, 9, 547-550.	3.9	57
103	V3 Recombinants Indicate a Central Role for CCR5 as a Coreceptor in Tissue Infection by Human Immunodeficiency Virus Type 1. Journal of Virology, 1999, 73, 2350-2358.	3.4	75