
Rene Maehr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6950741/publications.pdf Version: 2024-02-01

RENE MAEHD

#	Article	IF	CITATIONS
1	Integration of single-cell transcriptomes and chromatin landscapes reveals regulatory programs driving pharyngeal organ development. Nature Communications, 2022, 13, 457.	5.8	22
2	iMyoblasts for ex vivo and in vivo investigations of human myogenesis and disease modeling. ELife, 2022, 11, .	2.8	13
3	Mesenchymal Stromal Cell-Derived Extracellular Vesicles Restore Thymic Architecture and T Cell Function Disrupted by Neonatal Hyperoxia. Frontiers in Immunology, 2021, 12, 640595.	2.2	17
4	A diamidobenzimidazole STING agonist protects against SARS-CoV-2 infection. Science Immunology, 2021, 6, .	5.6	96
5	Systematic evaluation of chromosome conformation capture assays. Nature Methods, 2021, 18, 1046-1055.	9.0	108
6	SARS-CoV-2 Initiates Programmed Cell Death in Platelets. Circulation Research, 2021, 129, 631-646.	2.0	126
7	Combinatorial action of NF–Y and TALE at embryonic enhancers defines distinct gene expression programs during zygotic genome activation in zebrafish. Developmental Biology, 2020, 459, 161-180.	0.9	8
8	Ultrastructural Details of Mammalian Chromosome Architecture. Molecular Cell, 2020, 78, 554-565.e7.	4.5	359
9	Differentiation of human pluripotent stem cells toward pharyngeal endoderm derivatives: Current status and potential. Current Topics in Developmental Biology, 2020, 138, 175-208.	1.0	5
10	Lamin B2 Levels Regulate Polyploidization of Cardiomyocyte Nuclei and Myocardial Regeneration. Developmental Cell, 2020, 53, 42-59.e11.	3.1	57
11	Diverse repertoire of human adipocyte subtypes develops from transcriptionally distinct mesenchymal progenitor cells. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 17970-17979.	3.3	106
12	Single-Cell RNA-Sequencing-Based CRISPRi Screening Resolves Molecular Drivers of Early Human Endoderm Development. Cell Reports, 2019, 27, 708-718.e10.	2.9	81
13	Inferring population dynamics from single-cell RNA-sequencing time series data. Nature Biotechnology, 2019, 37, 461-468.	9.4	85
14	<i>Pax9</i> is required for cardiovascular development and interacts with <i>Tbx1</i> in the pharyngeal endoderm to control 4th pharyngeal arch artery morphogenesis. Development (Cambridge), 2019, 146, .	1.2	19
15	A Single-Cell Transcriptomic Atlas of Thymus Organogenesis Resolves Cell Types and Developmental Maturation. Immunity, 2018, 48, 1258-1270.e6.	6.6	147
16	Using an Inducible CRISPR-dCas9-KRAB Effector System to Dissect Transcriptional Regulation in Human Embryonic Stem Cells. Methods in Molecular Biology, 2017, 1507, 221-233.	0.4	31
17	Analysis of self-antigen specificity of islet-infiltrating T cells from human donors with type 1 diabetes. Nature Medicine, 2016, 22, 1482-1487.	15.2	232
18	Controlling transcription in human pluripotent stem cells using CRISPR-effectors. Methods, 2016, 101, 36-42.	1.9	15

Rene Maehr

#	Article	IF	CITATIONS
19	Transcriptional Regulation with CRISPR/Cas9 Effectors in Mammalian Cells. Methods in Molecular Biology, 2016, 1358, 43-57.	0.4	28
20	Functional annotation of native enhancers with a Cas9–histone demethylase fusion. Nature Methods, 2015, 12, 401-403.	9.0	548
21	Cas9 effector-mediated regulation of transcription and differentiation in human pluripotent stem cells. Development (Cambridge), 2014, 141, 219-223.	1.2	255
22	De Novo Formation of Insulin-Producing "Neo-β Cell Islets―from Intestinal Crypts. Cell Reports, 2014, 6, 1046-1058.	2.9	142
23	Reversal of β cell de-differentiation by a small molecule inhibitor of the TGFβ pathway. ELife, 2014, 3, e02809.	2.8	116
24	Generation of organized anterior foregut epithelia from pluripotent stem cells using small molecules. Stem Cell Research, 2013, 11, 1003-1012.	0.3	34
25	Brief Report: VGLL4 Is a Novel Regulator of Survival in Human Embryonic Stem Cells. Stem Cells, 2013, 31, 2833-2841.	1.4	20
26	Wnt signaling specifies and patterns intestinal endoderm. Mechanisms of Development, 2011, 128, 387-400.	1.7	94
27	Sox17 promotes differentiation in mouse embryonic stem cells by directly regulating extraembryonic gene expression and indirectly antagonizing self-renewal. Genes and Development, 2010, 24, 312-326.	2.7	270
28	The Angelman Syndrome Protein Ube3A Regulates Synapse Development by Ubiquitinating Arc. Cell, 2010, 140, 704-716.	13.5	554
29	A small molecule that directs differentiation of human ESCs into the pancreatic lineage. Nature Chemical Biology, 2009, 5, 258-265.	3.9	454
30	Generation of pluripotent stem cells from patients with type 1 diabetes. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 15768-15773.	3.3	534
31	Small Molecules Efficiently Direct Endodermal Differentiation of Mouse and Human Embryonic Stem Cells. Cell Stem Cell, 2009, 4, 348-358.	5.2	404
32	SCFÎ ² -TRCP controls oncogenic transformation and neural differentiation through REST degradation. Nature, 2008, 452, 370-374.	13.7	289
33	Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nature Biotechnology, 2008, 26, 1269-1275.	9.4	1,249
34	Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nature Biotechnology, 2008, 26, 795-797.	9.4	1,491
35	Live Imaging of Cysteine-Cathepsin Activity Reveals Dynamics of Focal Inflammation, Angiogenesis, and Polyp Growth. PLoS ONE, 2008, 3, e2916.	1.1	94
36	AIDâ^'/â^'μsâ^'/â^' Mice Are Agammaglobulinemic and Fail to Maintain B220â^'CD138+ Plasma Cells. Journal of Immunology, 2007, 178, 2192-2203.	0.4	41

Rene Maehr

#	Article	IF	CITATIONS
37	The mouse polyubiquitin gene UbC is essential for fetal liver development, cell-cycle progression and stress tolerance. EMBO Journal, 2007, 26, 2693-2706.	3.5	138
38	Mechanism-Based Probe for the Analysis of Cathepsin Cysteine Proteases in Living Cells. ACS Chemical Biology, 2006, 1, 713-723.	1.6	70
39	Immune-privileged embryonic Swiss mouse STO and STO cell-derived progenitor cells: major histocompatibility complex and cell differentiation antigen expression patterns resemble those of human embryonic stem cell lines. Immunology, 2006, 119, 98-115.	2.0	15
40	Asparagine Endopeptidase Is Not Essential for Class II MHC Antigen Presentation but Is Required for Processing of Cathepsin L in Mice. Journal of Immunology, 2005, 174, 7066-7074.	0.4	98
41	Cathepsin L is essential for onset of autoimmune diabetes in NOD mice. Journal of Clinical Investigation, 2005, 115, 2934-2943.	3.9	74
42	Differential dependence of CD4+CD25+ regulatory and natural killer-like T cells on signals leading to NF-ÂB activation. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 4566-4571.	3.3	218
43	Development of an isotope-coded activity-based probe for the quantitative profiling of cysteine proteases. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 3131-3134.	1.0	31
44	Mice deficient in invariant-chain and MHC class II exhibit a normal mature B2 cell compartment. European Journal of Immunology, 2004, 34, 2230-2236.	1.6	17
45	Functional Proteomics of the Active Cysteine Protease Content in Drosophila S2 Cells. Molecular and Cellular Proteomics, 2003, 2, 1188-1197.	2.5	33
46	Analysis of Protease Activity in Live Antigen-presenting Cells Shows Regulation of the Phagosomal Proteolytic Contents During Dendritic Cell Activation. Journal of Experimental Medicine, 2002, 196, 529-540.	4.2	201
47	Invariant Chain Controls the Activity of Extracellular Cathepsin L. Journal of Experimental Medicine, 2002, 196, 1263-1270.	4.2	81
48	The ubiquitin–proteasome pathway in thymocyte apoptosis: caspase-dependent processing of the deubiquitinating enzyme USP7 (HAUSP). Molecular Immunology, 2002, 39, 431-441.	1.0	41