
Paul J Govaerts

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6950530/publications.pdf

Version: 2024-02-01

PALL L COVAERTS

#	Article	IF	CITATIONS
1	Factors Affecting Auditory Performance of Postlinguistically Deaf Adults Using Cochlear Implants: An Update with 2251 Patients. Audiology and Neuro-Otology, 2013, 18, 36-47.	0.6	477
2	Pre-, Per- and Postoperative Factors Affecting Performance of Postlinguistically Deaf Adults Using Cochlear Implants: A New Conceptual Model over Time. PLoS ONE, 2012, 7, e48739.	1.1	347
3	Mutations in the human α-tectorin gene cause autosomal dominant non-syndromic hearing impairment. Nature Genetics, 1998, 19, 60-62.	9.4	323
4	Outcome of Cochlear Implantation at Different Ages from 0 to 6 Years. Otology and Neurotology, 2002, 23, 885-890.	0.7	179
5	Cochlear Implantation Between 5 and 20 Months of Age: The Onset of Babbling and the Audiologic Outcome. Otology and Neurotology, 2004, 25, 263-270.	0.7	124
6	CT and MR imaging of congential abnormalities of the inner ear and internal auditory canal. European Journal of Radiology, 2001, 40, 94-104.	1.2	111
7	Audiological findings in large vestibular aqueduct syndrome. International Journal of Pediatric Otorhinolaryngology, 1999, 51, 157-164.	0.4	102
8	A Second Gene for Otosclerosis, OTSC2, Maps to Chromosome 7q34-36. American Journal of Human Genetics, 2001, 68, 495-500.	2.6	91
9	Prognostic Value of Magnetic Resonance Imaging Findings in Hearing Preservation Surgery for Vestibular Schwannoma. Otology and Neurotology, 2001, 22, 87-94.	0.7	89
10	Cochlear Implant Programming: A Global Survey on the State of the Art. Scientific World Journal, The, 2014, 2014, 1-12.	0.8	88
11	Cochlear Implantation Improves Localization Ability in Patients With Unilateral Deafness. Ear and Hearing, 2015, 36, e93-e98.	1.0	81
12	Cochlear Implants in Aplasia and Hypoplasia of the Cochleovestibular Nerve. Otology and Neurotology, 2003, 24, 887-891.	0.7	71
13	A Retrospective Multicenter Study Comparing Speech Perception Outcomes for Bilateral Implantation and Bimodal Rehabilitation. Ear and Hearing, 2015, 36, 408-416.	1.0	70
14	Auditory speech sounds evaluation (A§E®): a new test to assess detection, discrimination and identification in hearing impairment. Cochlear Implants International, 2006, 7, 92-106.	0.5	69
15	Long-Term Evaluation of the Effect of Intracochlear Steroid Deposition on Electrode Impedance in Cochlear Implant Patients. Otology and Neurotology, 2003, 24, 769-774.	0.7	64
16	Statistical Analysis of Otosclerosis Surgery Performed by Jean Marquet. Annals of Otology, Rhinology and Laryngology, 1994, 103, 945-951.	0.6	63
17	Otosclerosis: a genetically heterogeneous disease involving at least three different genes. Bone, 2002, 30, 624-630.	1.4	47
18	Phenotypic variability of patients homozygous for the GJB2 mutation 35delG cannot be explained by the influence of one major modifier gene. European Journal of Human Genetics, 2009, 17, 517-524.	1.4	46

PAUL J GOVAERTS

#	Article	IF	CITATIONS
19	Contralateral Suppression of Transient Evoked Otoacoustic Emissions: Normative Data for a Clinical Test Set-Up. Otology and Neurotology, 2001, 22, 350-355.	0.7	43
20	Revision stapes surgery. Journal of Laryngology and Otology, 1997, 111, 233-239.	0.4	39
21	Persistent Stapedial Artery: Does it Prevent Successful Surgery?. Annals of Otology, Rhinology and Laryngology, 1993, 102, 724-728.	0.6	38
22	Use of Antibiotic Prophylaxis in Ear Surgery. Laryngoscope, 1998, 108, 107-110.	1.1	36
23	Development of a Software Tool Using Deterministic Logic for the Optimization of Cochlear Implant Processor Programming. Otology and Neurotology, 2010, 31, 908-918.	0.7	35
24	The Characteristics of Prelexical Babbling After Cochlear Implantation Between 5 and 20 Months of Age. Ear and Hearing, 2008, 29, 627-637.	1.0	30
25	A Uniform Graphical Representation of Intensity Coding in Current-Generation Cochlear Implant Systems. Ear and Hearing, 2014, 35, 533-543.	1.0	30
26	A Novel Z-Score–Based Method to Analyze Candidate Genes for Age-Related Hearing Impairment. Ear and Hearing, 2004, 25, 133-141.	1.0	25
27	Normal Hearing and Language Development in a Deaf-Born Child. Otology and Neurotology, 2004, 25, 924-929.	0.7	24
28	Box and Whisker Plots for Graphic Presentation of Audiometric Results of Conductive Hearing loss Treatment. Otolaryngology - Head and Neck Surgery, 1998, 118, 892-895.	1.1	23
29	A Two-stage Bipodal Screening Model for Universal Neonatal Hearing Screening. Otology and Neurotology, 2001, 22, 850-854.	0.7	23
30	Conversion of adult Nucleus [®] 5 cochlear implant users to the Nucleus [®] 6 system. Cochlear Implants International, 2015, 16, 222-232.	0.5	23
31	Speech understanding in noise with the Roger Pen, Naida CI Q70 processor, and integrated Roger 17 receiver in a multi-talker network. European Archives of Oto-Rhino-Laryngology, 2016, 273, 1107-1114.	0.8	23
32	Experiences of the use of FOX, an intelligent agent, for programming cochlear implant sound processors in new users. International Journal of Audiology, 2011, 50, 50-58.	0.9	22
33	Assessment of â€~Fitting to Outcomes Expert' FOXâ,"¢with new cochlear implant users in a multi-centre study. Cochlear Implants International, 2015, 16, 100-109.	0.5	20
34	Focal Sclerosis of Semicircular Canals With Severe DFNA9 Hearing Impairment Caused by a P51S COCH-Mutation. Otology and Neurotology, 2014, 35, 1077-1086.	0.7	19
35	Computer-assisted CI fitting: Is the learning capacity of the intelligent agent FOX beneficial for speech understanding?. Cochlear Implants International, 2017, 18, 198-206.	0.5	19
36	Computational Audiology: New Approaches to Advance Hearing Health Care in the Digital Age. Ear and Hearing, 2021, 42, 1499-1507.	1.0	19

PAUL J GOVAERTS

#	Article	IF	CITATIONS
37	Allograft Tympanoplasty Type 1 in the Childhood Population. Annals of Otology, Rhinology and Laryngology, 1996, 105, 871-876.	0.6	16
38	Tympano-ossicular allografts for cholesteatoma in children. International Journal of Pediatric Otorhinolaryngology, 1997, 42, 31-40.	0.4	16
39	The production of Dutch finite verb morphology: A comparison between hearing-impaired CI children and specific language impaired children. Lingua, 2014, 139, 68-79.	0.4	16
40	Evaluation of the â€~Fitting to Outcomes eXpert' (FOX [®]) with established cochlear implant users. Cochlear Implants International, 2015, 16, 39-46.	0.5	15
41	Cochlear implant telemedicine: Remote fitting based on psychoacoustic self-tests and artificial intelligence. Cochlear Implants International, 2020, 21, 260-268.	0.5	14
42	Normative data of the A§E® discrimination and identification tests in preverbal children. Cochlear Implants International, 2006, 7, 107-116.	0.5	12
43	Travelling wave velocity test and Ménière's disease revisited. European Archives of Oto-Rhino-Laryngology, 2008, 265, 517-523.	0.8	12
44	Development of the A§E test battery for assessment of pitch perception in speech. Cochlear Implants International, 2012, 13, 206-219.	0.5	12
45	Combined electric and acoustic hearing performance with Zebra [®] speech processor: Speech reception, place, and temporal coding evaluation. Cochlear Implants International, 2013, 14, 150-157.	0.5	11
46	Setting and Reaching Targets with Computer-Assisted Cochlear Implant Fitting. Scientific World Journal, The, 2014, 2014, 1-8.	0.8	11
47	Empowering Senior Cochlear Implant Users at Home via a Tablet Computer Application. American Journal of Audiology, 2018, 27, 417-430.	0.5	10
48	Lysates from Cultured Allogeneic Keratinocytes Stimulate Wound Healing after Tympanoplasty. Acta Oto-Laryngologica, 1996, 116, 589-593.	0.3	9
49	Clinical Assessment of Pitch Perception. Otology and Neurotology, 2011, 32, 736-741.	0.7	9
50	The Use of Malleus Allografts in Ossiculoplasty. Laryngoscope, 2002, 112, 1782-1784.	1.1	8
51	Genetic predisposition and sensory experience in language development: Evidence from cochlear-implanted children. Language and Cognitive Processes, 2011, 26, 1083-1101.	2.3	8
52	Speech understanding in noise in elderly adults: the effect of inhibitory control and syntactic complexity. International Journal of Language and Communication Disorders, 2018, 53, 628-642.	0.7	8
53	Treatment of Chronic Postoperative Otorrhea with Cultured Keratinocyte Sheets. Annals of Otology, Rhinology and Laryngology, 1997, 106, 15-21.	0.6	7
54	Babbling in early implanted CI children. International Congress Series, 2004, 1273, 344-347.	0.2	7

PAUL J GOVAERTS

#	Article	IF	CITATIONS
55	Expert opinion: Time to ban formal CI selection criteria?. Cochlear Implants International, 2016, 17, 74-77.	0.5	7
56	The use of cochlear's SCAN and wireless microphones to improve speech understanding in noise with the Nucleus6® CP900 processor. International Journal of Audiology, 2017, 56, 837-843.	0.9	7
57	Listening Difficulties of Children With Cochlear Implants in Mainstream Secondary Education. Ear and Hearing, 2020, 41, 1172-1186.	1.0	7
58	Variability of fitting parameters across cochlear implant centres. European Archives of Oto-Rhino-Laryngology, 2021, 278, 4671-4679.	0.8	7
59	Chronic Petrous Apicitis with Pericarotid Extension into the Neck in a Child. Annals of Otology, Rhinology and Laryngology, 2001, 110, 988-991.	0.6	6
60	From manual to artificial intelligence fitting: Two cochlear implant case studies. Cochlear Implants International, 2020, 21, 299-305.	0.5	6
61	Validation of the French-language version of the OTOSPEECH automated scoring software package for speech audiometry. European Annals of Otorhinolaryngology, Head and Neck Diseases, 2016, 133, 101-106.	0.4	5
62	The "Two-Hole―Ossiculoplasty Technique. Laryngoscope, 1996, 106, 507-510.	1.1	4
63	Spoken Word Recognition Errors in Speech Audiometry: A Measure of Hearing Performance?. BioMed Research International, 2015, 2015, 1-8.	0.9	4
64	Linguistic Factors Influencing Speech Audiometric Assessment. BioMed Research International, 2016, 2016, 1-14.	0.9	4
65	Speech polar plots for different directionality settings of SONNET cochlear implant processor. Cochlear Implants International, 2019, 20, 299-311.	0.5	4
66	A New Pathogenic Variant in the TRIOBP Associated with Profound Deafness Is Remediable with Cochlear Implantation. Audiology and Neuro-Otology, 2020, 26, 1-9.	0.6	4
67	A Probabilistic Graphical Model for Tuning Cochlear Implants. Lecture Notes in Computer Science, 2013, , 150-155.	1.0	4
68	Basic fitting and evaluation parameters of a newly designed cochlear implant electrode. Acta Oto-Laryngologica, 2004, 124, 281-285.	0.3	3
69	LiCoS: A New Linguistically Controlled Sentences Test to Assess Functional Hearing Performance. Folia Phoniatrica Et Logopaedica, 2018, 70, 90-99.	0.5	3
70	Clinical Presentation of DFNA8-DFNA12. , 2002, 61, 60-65.		2
71	Speech Perception Changes in the Acoustically Aided, Nonimplanted Ear after Cochlear Implantation: A Multicenter Study. Journal of Clinical Medicine, 2020, 9, 1758.	1.0	2
72	Sandwich embedding and perpendicular sectioning of monolayers. Micron and Microscopica Acta, 1987, 18, 227-228.	0.2	0

#	Article	IF	CITATIONS
73	Linguistic Assessment Tools for the Digisonic [®] Dual Electric-Acoustic Speech Processor. Cochlear Implants International, 2010, 11, 306-311.	0.5	0
74	Empowering Cochlear Implant Users in Their Home Environment by eHealth Solutions. , 2021, , 605-632.		0
75	Empowering Cochlear Implant Users in Their Home Environment by eHealth Solutions. Advances in Medical Technologies and Clinical Practice Book Series, 2019, , 86-120.	0.3	0