Xiangjing Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6950423/publications.pdf

Version: 2024-02-01

840585 794469 22 355 11 19 citations g-index h-index papers 22 22 22 460 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	High Temperature Modified Covalent Triazine Framework for High-efficiency and Ultra-cycle Stable Symmetric Supercapacitor. Chemistry Letters, 2022, 51, 854-858.	0.7	1
2	Hierarchical construction of reduced graphene oxide-polyaniline-NiMoS4 phases to enhance the asymmetric supercapacitor capacity. Diamond and Related Materials, 2022, 127, 109183.	1.8	11
3	Hard template-assisted N, P-doped multifunctional mesoporous carbon for supercapacitors and hydrogen evolution reaction. Journal of Materials Science, 2021, 56, 2385-2398.	1.7	31
4	Mathematical model of thermal storage catalytic combustion process of ethyl acetate on platinum/palladium molecular sieve support reaction system. Asia-Pacific Journal of Chemical Engineering, 2021, 16, .	0.8	0
5	Well-connected NiMoS4 nanosheets and Ni foam skeleton bonded through conductive reduced graphene oxide for highly efficient hybrid supercapacitor. Diamond and Related Materials, 2021, 112, 108240.	1.8	11
6	Ammonium fluoride regulated CoMoS4-derived Co9S8@MoS2 composite for high-performance hybrid supercapacitor. Surface and Coatings Technology, 2021, 413, 127085.	2.2	24
7	Ionic liquid [C3mim]OTf aqueous solution: Green high efficiency electroreduction for carbon dioxide at room-temperature. Microchemical Journal, 2021, 169, 106559.	2.3	3
8	Well-designed nanosheet-constructed porous CoMoS4 arrays for ultrahigh-performance supercapacitors. Ceramics International, 2020, 46, 4878-4888.	2.3	36
9	Boosting the energy storage performance of cobalt molybdate microspheres constructed from urotropinâ€induced ultrathin nanosheets. International Journal of Energy Research, 2020, 44, 2196-2207.	2.2	6
10	Design of reduced graphene oxide supported NiMoS4 to enhance energy capacity of hybrid supercapacitors. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 586, 124289.	2.3	21
11	High crystallinity Sn crystals on Ni foam: an ideal bimetallic catalyst for the electroreduction of carbon dioxide to syngas. RSC Advances, 2020, 10, 39026-39032.	1.7	6
12	Castoff derived Biomassâ€'carbon supported MoS2 nanosheets for hydrogen evolution reaction. Materials Chemistry and Physics, 2020, 252, 123244.	2.0	24
13	In-situ induced sponge-like NiMoS4 nanosheets on self-supported nickel foam skeleton for electrochemical capacitor electrode. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 602, 125099.	2.3	12
14	Amorphous-microcrystal combined manganese oxides for efficiently catalytic combustion of VOCs. Molecular Catalysis, 2020, 489, 110920.	1.0	15
15	Pore Surface Engineering of Covalent Triazine Frameworks@MoS ₂ Electrocatalyst for the Hydrogen Evolution Reaction. ChemSusChem, 2019, 12, 5032-5040.	3.6	38
16	Enhanced energy storage activity of NiMoO4 modified by graphitic carbon nitride. Journal of Materials Science: Materials in Electronics, 2019, 30, 5109-5119.	1.1	13
17	Preparation and performances of nanorod-like inverse CeO2–CuO catalysts derived from Ce-1,3,5-Benzene tricarboxylic acid for CO preferential oxidation. Reaction Kinetics, Mechanisms and Catalysis, 2018, 124, 651-667.	0.8	9
18	An efficient hybrid supercapacitor based on battery-type MnS/reduced graphene oxide and capacitor-type biomass derived activated carbon. Journal of Materials Science: Materials in Electronics, 2018, 29, 8410-8420.	1.1	11

#	Article	IF	CITATION
19	A Novel Hierarchical Flower-like NiMoO ₄ for Supercapacitors. Chemistry Letters, 2018, 47, 1213-1215.	0.7	7
20	Electrochemical Reduction of Carbon Dioxide to Formic Acid in Ionic Liquid [Emim][N(CN)2]/Water System. Electrochimica Acta, 2017, 247, 281-287.	2.6	29
21	Guanidiniumâ€based dicarboxylic acid ionic liquids for <scp>SO₂</scp> capture. Journal of Chemical Technology and Biotechnology, 2017, 92, 767-774.	1.6	32
22	Oxidation of Cyclohexane Catalyzed by TS-1 in Ionic Liquid with Tert-butyl-hydroperoxide. Chinese Journal of Chemical Engineering, 2008, 16, 373-375.	1.7	15