Erik Storkebaum

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6950374/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Immunoprecipation Assay to Quantify the Amount of tRNAs associated with Their Interacting Proteins in Tissue and Cell Culture. Bio-protocol, 2022, 12, e4335.	0.2	1
2	Intellectual disability-associated disruption of O-GlcNAc cycling impairs habituation learning in Drosophila. PLoS Genetics, 2022, 18, e1010159.	1.5	7
3	tRNA overexpression rescues peripheral neuropathy caused by mutations in tRNA synthetase. Science, 2021, 373, 1161-1166.	6.0	59
4	The integrated stress response contributes to tRNA synthetase–associated peripheral neuropathy. Science, 2021, 373, 1156-1161.	6.0	64
5	O-GlcNAcase contributes to cognitive function in Drosophila. Journal of Biological Chemistry, 2020, 295, 8636-8646.	1.6	16
6	The Drosophila FUS ortholog cabeza promotes adult founder myoblast selection by Xrp1-dependent regulation of FGF signaling. PLoS Genetics, 2020, 16, e1008731.	1.5	1
7	Title is missing!. , 2020, 16, e1008731.		0
8	Title is missing!. , 2020, 16, e1008731.		0
9	FUS-mediated regulation of acetylcholine receptor transcription at neuromuscular junctions is compromised in amyotrophic lateral sclerosis. Nature Neuroscience, 2019, 22, 1793-1805.	7.1	81
10	C9orf72 arginine-rich dipeptide proteins interact with ribosomal proteins in vivo to induce a toxic translational arrest that is rescued by eIF1A. Acta Neuropathologica, 2019, 137, 487-500.	3.9	94
11	Impaired DNA damage response signaling by FUS-NLS mutations leads to neurodegeneration and FUS aggregate formation. Nature Communications, 2018, 9, 335.	5.8	217
12	<i>Xrp1</i> genetically interacts with the ALS-associated <i>FUS</i> orthologue <i>caz</i> and mediates its toxicity. Journal of Cell Biology, 2018, 217, 3947-3964.	2.3	23
13	Differential Requirement for Translation Initiation Factor Pathways during Ecdysone-Dependent Neuronal Remodeling in Drosophila. Cell Reports, 2018, 24, 2287-2299.e4.	2.9	32
14	Motor neuron intrinsic and extrinsic mechanisms contribute to the pathogenesis of FUS-associated amyotrophic lateral sclerosis. Acta Neuropathologica, 2017, 133, 887-906.	3.9	111
15	Molecular pathogenesis of peripheral neuropathies: insights from Drosophila models. Current Opinion in Genetics and Development, 2017, 44, 61-73.	1.5	14
16	Cell Type-specific Metabolic Labeling of Proteins with Azidonorleucine in Drosophila. Bio-protocol, 2017, 7, .	0.2	5
17	Cell Type-specific Metabolic Labeling of Proteins with Azidonorleucine in. Bio-protocol, 2017, 7, e2397.	0.2	1
18	Toxic gain of function from mutant <scp>FUS</scp> protein is crucial to trigger cell autonomous motor neuron loss. EMBO Journal, 2016, 35, 1077-1097.	3.5	187

Erik Storkebaum

#	Article	IF	CITATIONS
19	Peripheral neuropathy via mutant tRNA synthetases: Inhibition of protein translation provides a possible explanation. BioEssays, 2016, 38, 818-829.	1.2	34
20	Vascular endothelial growth factor: a neurovascular target in neurological diseases. Nature Reviews Neurology, 2016, 12, 439-454.	4.9	252
21	Impaired protein translation in Drosophila models for Charcot–Marie–Tooth neuropathy caused by mutant tRNA synthetases. Nature Communications, 2015, 6, 7520.	5.8	102
22	Cell-selective labelling of proteomes in Drosophila melanogaster. Nature Communications, 2015, 6, 7521.	5.8	85
23	Highly efficient cell-type-specific gene inactivation reveals a key function for the Drosophila FUS homolog cabeza in neurons. Scientific Reports, 2015, 5, 9107.	1.6	38
24	Paracrine control of vascular innervation in health and disease. Acta Physiologica, 2011, 203, 61-86.	1.8	29
25	Cerebrovascular disorders: molecular insights and therapeutic opportunities. Nature Neuroscience, 2011, 14, 1390-1397.	7.1	82
26	Matrix-Binding Vascular Endothelial Growth Factor (VEGF) Isoforms Guide Granule Cell Migration in the Cerebellum via VEGF Receptor Flk1. Journal of Neuroscience, 2010, 30, 15052-15066.	1.7	75
27	Impaired Autonomic Regulation of Resistance Arteries in Mice With Low Vascular Endothelial Growth Factor or Upon Vascular Endothelial Growth Factor Trap Delivery. Circulation, 2010, 122, 273-281.	1.6	37
28	Dominant mutations in the tyrosyl-tRNA synthetase gene recapitulate in <i>Drosophila</i> features of human Charcot–Marie–Tooth neuropathy. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 11782-11787.	3.3	96
29	Treatment of motoneuron degeneration by intracerebroventricular delivery of VEGF in a rat model of ALS. Nature Neuroscience, 2005, 8, 85-92.	7.1	464
30	VEGF delivery with retrogradely transported lentivector prolongs survival in a mouse ALS model. Nature, 2004, 429, 413-417.	13.7	569
31	VEGF: once regarded as a specific angiogenic factor, now implicated in neuroprotection. BioEssays, 2004, 26, 943-954.	1.2	476
32	VEGF: necessary to prevent motoneuron degeneration, sufficient to treat ALS?. Trends in Molecular Medicine, 2004, 10, 275-282.	3.5	45
33	Effects of vascular endothelial growth factor (VEGF) on motor neuron degeneration. Neurobiology of Disease, 2004, 17, 21-28.	2.1	111
34	VEGF: a critical player in neurodegeneration. Journal of Clinical Investigation, 2004, 113, 14-18.	3.9	87
35	VEGF: a critical player in neurodegeneration. Journal of Clinical Investigation, 2004, 113, 14-18.	3.9	198
36	VEGF is a modifier of amyotrophic lateral sclerosis in mice and humans and protects motoneurons against ischemic death. Nature Genetics, 2003, 34, 383-394.	9.4	794

#	Article	IF	CITATIONS
37	Lack of Plasminogen Activator Inhibitor-1 Promotes Growth and Abnormal Matrix Remodeling of Advanced Atherosclerotic Plaques in Apolipoprotein E–Deficient Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2002, 22, 499-505.	1.1	123
38	Vascular and neuronal effects of VEGF in the nervous system: implications for neurological disorders. Seminars in Cell and Developmental Biology, 2002, 13, 39-53.	2.3	234
39	Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter causes motor neuron degeneration. Nature Genetics, 2001, 28, 131-138.	9.4	967