Yongsheng Chen

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6950214/yongsheng-chen-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

15,950 199 123 57 h-index g-index citations papers 206 6.81 17,748 7.9 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
199	Boosting photocatalytic reduction of nitrate to ammonia enabled by perovskite/biochar nanocomposites with oxygen defects and O-containing functional groups <i>Chemosphere</i> , 2022 , 294, 133	3 96 3	3
198	Fluoride remediation from on-site wastewater using optimized bauxite nanocomposite (Bx-Ce-La@500): Synthesis maximization, and mechanism of F removal <i>Journal of Hazardous Materials</i> , 2022 , 430, 128401	12.8	2
197	Microwave-assisted continuous flow phytosynthesis of silver nanoparticle/reduced graphene oxide composites and related visible light catalytic performance <i>Journal of Environmental Sciences</i> , 2022 , 115, 286-293	6.4	1
196	MOF-Derived Nanoporous Carbon Incorporated in the Cation Exchange Membrane for Gradient Power Generation <i>Membranes</i> , 2022 , 12,	3.8	O
195	Probing the Phytosynthesis Mechanism of Gold and Silver Nanoparticles by Sequential Separation of Plant Extract and Molecular Characterization with Ultra-High-Resolution Mass Spectrometry. ACS Sustainable Chemistry and Engineering, 2022, 10, 3829-3838	8.3	O
194	Planning decentralized urban renewable energy systems using algal cultivation for closed-loop and resilient communities. <i>Environment and Planning B: Urban Analytics and City Science</i> , 2022 , 49, 1464-1485	8 ²	O
193	Electrochemical degradation performance and mechanism of dibutyl phthalate with hydrophobic PbO electrode. <i>Chemosphere</i> , 2021 , 288, 132638	8.4	2
192	Robust cellulose-based composite adsorption membrane for heavy metal removal. <i>Journal of Hazardous Materials</i> , 2021 , 406, 124746	12.8	29
191	Tannic acid-metal complex modified MXene membrane for contaminants removal from water. Journal of Membrane Science, 2021 , 622, 119042	9.6	17
190	Incorporation of Cellulose Nanocrystals into Graphene Oxide Membranes for Efficient Antibiotic Removal at High Nutrient Recovery. <i>ACS Applied Materials & District Removal</i> , 13, 14102-14111	9.5	8
189	Forward Solute Transport in Forward Osmosis Using a Freestanding Graphene Oxide Membrane. <i>Environmental Science & Environmental Science & Environment</i>	10.3	1
188	Nanofluidic Membranes to Address the Challenges of Salinity Gradient Power Harvesting. <i>ACS Nano</i> , 2021 , 15, 5838-5860	16.7	26
187	Hierarchical Porous K-OMS-2/3DOM-m Ti0.7Si0.3O2 Catalysts for Soot Combustion: Easy Preparation, High Catalytic Activity, and Good Resistance to H2O and SO2. <i>ACS Catalysis</i> , 2021 , 11, 5554	-5371	8
186	U.SChina Collaboration is Vital to Global Plans for a Healthy Environment and Sustainable Development. <i>Environmental Science & Environmental Science & Environment & Environmen</i>	10.3	2
185	Influence of the Exclusion-Enrichment Effect on Ion Transport in Two-Dimensional Molybdenum Disulfide Membranes. <i>ACS Applied Materials & Disulfide Membranes</i> . <i>ACS Applied Materials & Disulfide Membranes</i> .	9.5	1
184	Na-Doped Graphitic Carbon Nitride for Removal of Aqueous Contaminants via Adsorption and Photodegradation. <i>ACS Applied Nano Materials</i> , 2021 , 4, 7746-7757	5.6	2
183	Polyvinyl alcohol-based monovalent anion selective membranes with excellent permselectivity in selectrodialysis. <i>Journal of Membrane Science</i> , 2021 , 620, 118889	9.6	3

(2020-2021)

182	Transformation of acetaminophen in solution containing both peroxymonosulfate and chlorine: Performance, mechanism, and disinfection by-product formation. <i>Water Research</i> , 2021 , 189, 116605	12.5	13	
181	Facile synthesis of birnessite-type K2Mn4O8 and cryptomelane-type K2-xMn8O16 catalysts and their excellent catalytic performance for soot combustion with high resistance to H2O and SO2. <i>Applied Catalysis B: Environmental</i> , 2021 , 285, 119779	21.8	11	
180	Electrochemical degradation of reverse osmosis concentrate (ROC) using the electrodeposited Ti/TiO2-NTs/PbO2 electrode. <i>Separation and Purification Technology</i> , 2021 , 258, 118056	8.3	13	
179	Differentiating Solutes with Precise Nanofiltration for Next Generation Environmental Separations: A Review. <i>Environmental Science & Environmental Sc</i>	10.3	36	
178	Disproportionate presence of adenosine in mitochondrial and chloroplast DNA of. <i>IScience</i> , 2021 , 24, 102005	6.1	2	
177	Fit-for-Purpose Design of Nanofiltration Membranes for Simultaneous Nutrient Recovery and Micropollutant Removal. <i>Environmental Science & Environmental Science & Environment</i>	10.3	12	
176	Green synthesized nanosilver-biochar photocatalyst for persulfate activation under visible-light illumination. <i>Chemosphere</i> , 2021 , 284, 131237	8.4	3	
175	Toxicity of biosynthesized silver nanoparticles to aquatic organisms of different trophic levels. <i>Chemosphere</i> , 2020 , 258, 127346	8.4	24	
174	Adsorption mechanism for removing different species of fluoride by designing of core-shell boehmite. <i>Journal of Hazardous Materials</i> , 2020 , 394, 122555	12.8	24	
173	Impacts of organic matter on the toxicity of biosynthesized silver nanoparticles to green microalgae Chlorella vulgaris. <i>Environmental Research</i> , 2020 , 185, 109433	7.9	15	
172	Coexposed nanoparticulate Ag alleviates the acute toxicity induced by ionic Agin vivo. <i>Science of the Total Environment</i> , 2020 , 723, 138050	10.2	15	
171	Prevention of algaculture contamination using pesticides for biofuel production. <i>Algal Research</i> , 2020 , 50, 101975	5	1	
170	Two-Dimensional TiCT MXene/GO Hybrid Membranes for Highly Efficient Osmotic Power Generation. <i>Environmental Science & Environmental Science & Environ</i>	10.3	19	
169	Thermodynamic analysis of a solar thermal facilitated membrane seawater desalination process. Journal of Cleaner Production, 2020 , 256, 120398	10.3	12	
168	Microbial community analysis and correlation with 2-methylisoborneol occurrence in landscape lakes of Beijing. <i>Environmental Research</i> , 2020 , 183, 109217	7.9	2	
167	Cellulose nanocrystal/silver (CNC/Ag) thin-film nanocomposite nanofiltration membranes with multifunctional properties. <i>Environmental Science: Nano</i> , 2020 , 7, 803-816	7.1	30	
166	The trade-off between membrane permselectivity and conductivity: A percolation simulation of mass transport. <i>Journal of Membrane Science</i> , 2020 , 597, 117751	9.6	5	
165	Chemical cleaning of algae-fouled ultrafiltration (UF) membrane by sodium hypochlorite (NaClO): Characterization of membrane and formation of halogenated by-products. <i>Journal of Membrane Science</i> , 2020 , 598, 117662	9.6	27	

164	Thermolytic osmotic heat engine for low-grade heat harvesting: Thermodynamic investigation and potential application exploration. <i>Applied Energy</i> , 2020 , 259, 114192	10.7	7
163	Lignin-Based Nanocapsules with Tunable Size for Cu(II) Ion Absorption. <i>ACS Applied Nano Materials</i> , 2020 , 3, 10835-10843	5.6	7
162	Study on the Transport Mechanism of a Freestanding Graphene Oxide Membrane for Forward Osmosis. <i>Environmental Science & Environmental & Environmental</i>	10.3	10
161	Investigation of characteristic and performance of polyvinyl chloride ultrafiltration membranes modified with silica-oriented multi walled carbon nanotubes. <i>Journal of Applied Polymer Science</i> , 2020 , 137, 49397	2.9	5
160	Nanocomposite and nanostructured ion-exchange membrane in salinity gradient power generation using reverse electrodialysis 2019 , 295-316		1
159	Green synthesis of ZnO hierarchical microstructures by and their antibacterial activity. <i>Saudi Journal of Biological Sciences</i> , 2019 , 26, 1364-1371	4	24
158	Polymeric Nanocomposites of Iron Dxide Nanoparticles (IONPs) Synthesized Using Terminalia chebula Leaf Extract for Enhanced Adsorption of Arsenic(V) from Water. <i>Colloids and Interfaces</i> , 2019 , 3, 17	3	17
157	Efficient membrane microalgal harvesting: Pilot-scale performance and techno-economic analysis. <i>Journal of Cleaner Production</i> , 2019 , 218, 83-95	10.3	36
156	Organic frameworks induce synthesis and growth mechanism of well-ordered dumbbell-shaped ZnO particles. <i>Materials Chemistry and Physics</i> , 2019 , 232, 129-136	4.4	9
155	Performing homogeneous catalytic ozonation using heterogeneous Mn2+-bonded oxidized carbon nanotubes by self-driven pH variation induced reversible desorption and adsorption of Mn2+. <i>Environmental Science: Nano</i> , 2019 , 6, 1932-1940	7.1	7
154	Enhanced activity and sulfur resistance for soot combustion on three-dimensionally ordered macroporous-mesoporous MnxCe1-xO/SiO2 catalysts. <i>Applied Catalysis B: Environmental</i> , 2019 , 254, 246-259	21.8	37
153	In situ remediation of subsurface contamination: opportunities and challenges for nanotechnology and advanced materials. <i>Environmental Science: Nano</i> , 2019 , 6, 1283-1302	7.1	38
152	Copper oxide nanoparticles promote the evolution of multicellularity in yeast. <i>Nanotoxicology</i> , 2019 , 13, 597-605	5.3	2
151	Improving antifouling performance for the harvesting of Scenedesmus acuminatus using Fe2O3 nanoparticles incorporated PVC nanocomposite membranes. <i>Journal of Applied Polymer Science</i> , 2019 , 136, 47685	2.9	12
150	The inhibition effect of recycled Scenedesmus acuminatus culture media: Influence of growth phase, inhibitor identification and removal. <i>Algal Research</i> , 2019 , 42, 101612	5	21
149	Characteristics and performance of PVDF membrane prepared by using NaCl coagulation bath: Relationship between membrane polymorphous structure and organic fouling. <i>Journal of Membrane Science</i> , 2019 , 579, 22-32	9.6	39
148	Harvesting of Scenedesmus acuminatus using ultrafiltration membranes operated in alternative feed directions. <i>Journal of Bioscience and Bioengineering</i> , 2019 , 128, 103-109	3.3	9
147	Influence of growth phase on the harvesting of Scenedesmus acuminatus using ultrafiltration. <i>Science of the Total Environment</i> , 2019 , 660, 25-31	10.2	10

(2017-2019)

146	Identification of auto-inhibitors in the reused culture media of the Chlorophyta Scenedesmus acuminatus. <i>Algal Research</i> , 2019 , 44, 101665	5	12
145	Anion-exchange membrane with ion-nanochannels to beat trade-off between membrane conductivity and acid blocking performance for waste acid reclamation. <i>Journal of Membrane Science</i> , 2019 , 573, 657-667	9.6	24
144	Improving Ion Rejection of Conductive Nanofiltration Membrane through Electrically Enhanced Surface Charge Density. <i>Environmental Science & Environmental Science & Environme</i>	10.3	43
143	Pressure Retarded Osmosis and Reverse Electrodialysis as Power Generation Membrane Systems 2019 , 133-152		2
142	A freestanding graphene oxide membrane for efficiently harvesting salinity gradient power. <i>Carbon</i> , 2018 , 138, 410-418	10.4	22
141	Environmental influence on rotenone performance as an algal crop protective agent to prevent pond crashes for biofuel production. <i>Algal Research</i> , 2018 , 33, 277-283	5	7
140	Enhanced permeation and antifouling performance of polyvinyl chloride (PVC) blend Pluronic F127 ultrafiltration membrane by using salt coagulation bath (SCB). <i>Journal of Membrane Science</i> , 2018 , 548, 32-41	9.6	53
139	Low-Grade Waste Heat Recovery via an Osmotic Heat Engine by Using a Freestanding Graphene Oxide Membrane. <i>ACS Omega</i> , 2018 , 3, 15501-15509	3.9	8
138	Monovalent-anion selective and antifouling polyelectrolytes multilayer anion exchange membrane for reverse electrodialysis. <i>Journal of Membrane Science</i> , 2018 , 567, 68-75	9.6	40
137	Fe2O3 nanocomposite PVC membrane with enhanced properties and separation performance. Journal of Membrane Science, 2017 , 529, 170-184	9.6	57
136	Enhancing fouling resistance of polyethylene anion exchange membranes using carbon nanotubes and iron oxide nanoparticles. <i>Desalination</i> , 2017 , 411, 19-27	10.3	28
135	Efficient visible light-driven in situ photocatalytic destruction of harmful alga by worm-like N,P co-doped TiO2/expanded graphite carbon layer (NPT-EGC) floating composites. <i>Catalysis Science and Technology</i> , 2017 , 7, 2335-2346	5.5	26
134	An integrative modeling and experimental study on the ionic resistance of ion-exchange membranes. <i>Journal of Membrane Science</i> , 2017 , 524, 362-369	9.6	29
133	The preparation and performance of lignin-based activated carbon fiber adsorbents for treating gaseous streams. <i>Frontiers of Chemical Science and Engineering</i> , 2017 , 11, 328-337	4.5	24
132	CeO nanoparticles alter the outcome of species interactions. <i>Nanotoxicology</i> , 2017 , 11, 625-636	5.3	7
131	A Novel Hybrid Poly (vinyl alcohol) (PVA)/Poly (2,6-dimethyl-1,4-phenylene oxide) (PPO) Membranes for Reverse Electrodialysis Power System. <i>Electrochimica Acta</i> , 2017 , 239, 65-73	6.7	20
130	Energy, water and nutrient impacts of California-grown vegetables compared to controlled environmental agriculture systems in Atlanta, GA. <i>Resources, Conservation and Recycling</i> , 2017 , 122, 319	-328	22
129	Mechanism Exploration of Ion Transport in Nanocomposite Cation Exchange Membranes. <i>ACS Applied Materials & Description of Materi</i>	9.5	23

128	Electrochemical impedance spectroscopy of enhanced layered nanocomposite ion exchange membranes. <i>Journal of Membrane Science</i> , 2017 , 541, 611-620	9.6	9
127	A comparison study: The different impacts of sodium hypochlorite on PVDF and PSF ultrafiltration (UF) membranes. <i>Water Research</i> , 2017 , 109, 227-236	12.5	33
126	Electrochemical oxidation of ofloxacin using a TiO2-based SnO2-Sb/polytetrafluoroethylene resin-PbO2 electrode: Reaction kinetics and mass transfer impact. <i>Applied Catalysis B: Environmental</i> , 2017 , 203, 515-525	21.8	138
125	Valorization of desalination brines by electrodialysis with bipolar membranes using nanocomposite anion exchange membranes. <i>Desalination</i> , 2017 , 406, 16-24	10.3	36
124	Impact of sodium hypochlorite (NaClO) on polysulfone (PSF) ultrafiltration membranes: The evolution of membrane performance and fouling behavior. <i>Separation and Purification Technology</i> , 2017 , 175, 238-247	8.3	12
123	Behavior and Potential Impacts of Metal-Based Engineered Nanoparticles in Aquatic Environments. <i>Nanomaterials</i> , 2017 , 7,	5.4	86
122	The prevention of saltwater algal pond contamination using the electron transport chain disruptor, rotenone. <i>Algal Research</i> , 2016 , 18, 209-212	5	15
121	Significant Enrichment of Engineered Nanoparticles in Water Surface Microlayer. <i>Environmental Science and Technology Letters</i> , 2016 , 3, 381-385	11	13
120	Thin-film composite forward osmosis membranes with substrate layer composed of polysulfone blended with PEG or polysulfone grafted PEG methyl ether methacrylate. <i>Frontiers of Chemical Science and Engineering</i> , 2016 , 10, 562-574	4.5	20
119	The Selective Use of Hypochlorite to Prevent Pond Crashes for Algae-Biofuel Production. <i>Water Environment Research</i> , 2016 , 88, 70-8	2.8	24
118	Fouling resistant nanocomposite cation exchange membrane with enhanced power generation for reverse electrodialysis. <i>Journal of Membrane Science</i> , 2016 , 516, 162-171	9.6	48
117	Application of silica-based monolith as solid-phase extraction sorbent for extracting toxaphene congeners in soil. <i>Journal of Sol-Gel Science and Technology</i> , 2016 , 80, 87-95	2.3	4
116	Fate of engineered cerium oxide nanoparticles in an aquatic environment and their toxicity toward 14 ciliated protist species. <i>Environmental Pollution</i> , 2016 , 212, 584-591	9.3	11
115	Plant Mediated Green Synthesis of CuO Nanoparticles: Comparison of Toxicity of Engineered and Plant Mediated CuO Nanoparticles towards Daphnia magna. <i>Nanomaterials</i> , 2016 , 6,	5.4	77
114	Green Synthesis of Iron Nanoparticles and Their Environmental Applications and Implications. <i>Nanomaterials</i> , 2016 , 6,	5.4	253
113	Hemocompatibility and ultrafiltration performance of PAN membranes surface-modified by hyperbranched polyesters. <i>Polymers for Advanced Technologies</i> , 2016 , 27, 1569-1576	3.2	8
112	Speciation analysis of silver sulfide nanoparticles in environmental waters by magnetic solid-phase extraction coupled with ICP-MS. <i>Journal of Analytical Atomic Spectrometry</i> , 2016 , 31, 2285-2292	3.7	18
111	Taking advantage of rotifer sensitivity to rotenone to prevent pond crashes for algal-biofuel production. <i>Algal Research</i> , 2015 , 10, 100-103	5	29

110	Forming mechanism study of unique pillar-like and defect-free PVDF ultrafiltration membranes with high flux. <i>Journal of Membrane Science</i> , 2015 , 487, 1-11	9.6	29
109	Potential ion exchange membranes and system performance in reverse electrodialysis for power generation: A review. <i>Journal of Membrane Science</i> , 2015 , 486, 71-88	9.6	215
108	Vernalophrys algivore gen. nov., sp. nov. (Rhizaria: Cercozoa: Vampyrellida), a New Algal Predator Isolated from Outdoor Mass Culture of Scenedesmus dimorphus. <i>Applied and Environmental Microbiology</i> , 2015 , 81, 3900-13	4.8	27
107	Effects of aqueous stable fullerene nanocrystal (nC60) on Scenedesmus obliquus: evaluation of the sub-lethal photosynthetic responses and inhibition mechanism. <i>Chemosphere</i> , 2015 , 122, 162-167	8.4	35
106	Translocation and biotransformation of CuO nanoparticles in rice (Oryza sativa L.) plants. <i>Environmental Pollution</i> , 2015 , 197, 99-107	9.3	137
105	Evaluation of electrochemical properties and reverse electrodialysis performance for porous cation exchange membranes with sulfate-functionalized iron oxide. <i>Journal of Membrane Science</i> , 2015 , 473, 210-217	9.6	48
104	The Influence of Reaction Temperature on the Formation and Photocatalytic Hydrogen Generation of (001) Faceted TiO2 Nanosheets. <i>ChemNanoMat</i> , 2015 , 1, 270-275	3.5	13
103	Use of Copper to Selectively Inhibit Brachionus calyciflorus (Predator) Growth in Chlorella kessleri (Prey) Mass Cultures for Algae Biodiesel Production. <i>International Journal of Molecular Sciences</i> , 2015 , 16, 20674-84	6.3	23
102	The Use of the Schizonticidal Agent Quinine Sulfate to Prevent Pond Crashes for Algal-Biofuel Production. <i>International Journal of Molecular Sciences</i> , 2015 , 16, 27450-6	6.3	15
101	Effect of inorganic filler size on electrochemical performance of nanocomposite cation exchange membranes for salinity gradient power generation. <i>Journal of Membrane Science</i> , 2015 , 482, 33-41	9.6	27
100	Enhanced Ionic Conductivity and Power Generation Using Ion-Exchange Resin Beads in a Reverse-Electrodialysis Stack. <i>Environmental Science & Environmental Science & Environme</i>	10.3	28
99	Role of pentahedrally coordinated titanium in titanium silicalite-1 in propene epoxidation. <i>RSC Advances</i> , 2015 , 5, 17897-17904	3.7	47
98	Air-promoted adsorptive desulfurization of diesel fuel over Ti-Ce mixed metal oxides. <i>AICHE Journal</i> , 2015 , 61, 631-639	3.6	41
97	Nanocomposite reverse electrodialysis (RED) ion-exchange membranes for salinity gradient power generation. <i>Journal of Membrane Science</i> , 2014 , 460, 139-147	9.6	92
96	Alpha-Fe(2)O(3) elicits diameter-dependent effects during exposure to an in vitro model of the human placenta. <i>Cell Biology and Toxicology</i> , 2014 , 30, 31-53	7.4	21
95	Bioaccumulation of decabromodiphenyl ether (BDE209) in earthworms in the presence of lead (Pb). <i>Chemosphere</i> , 2014 , 106, 57-64	8.4	23
94	Nitrogen-Doped Mesoporous Carbon Promoted Chemical Adsorption of Sulfur and Fabrication of High-Areal-Capacity Sulfur Cathode with Exceptional Cycling Stability for Lithium-Sulfur Batteries. <i>Advanced Functional Materials</i> , 2014 , 24, 1243-1250	15.6	820
93	Mechanism of Enhanced Carbon Cathode Performance by Nitrogen Doping in LithiumBulfur Battery: An X-ray Absorption Spectroscopic Study. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 7765-7771	3.8	93

92	Examination of Nanoparticle D NA Binding Characteristics Using Single-Molecule Imaging Atomic Force Microscopy. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 13876-13882	3.8	5
91	Critical evaluation and modeling of algal harvesting using dissolved air flotation. <i>Biotechnology and Bioengineering</i> , 2014 , 111, 2477-85	4.9	27
90	Effect of centrifugation on water recycling and algal growth to enable algae biodiesel production. <i>Water Environment Research</i> , 2014 , 86, 2325-9	2.8	3
89	Efficient photocatalytic H2 production using visible-light irradiation and (CuAg)xIn2xZn2(1 12x)S2 photocatalysts with tunable band gaps. <i>International Journal of Energy Research</i> , 2014 , 38, 1513-1521	4.5	14
88	Atomic force microscopy study of the interaction of DNA and nanoparticles. <i>Advances in Experimental Medicine and Biology</i> , 2014 , 811, 93-109	3.6	9
87	Effects of inorganic electron donors in photocatalytic hydrogen production over Ru/(CuAg)0.15In0.3Zn1.4S2 under visible light irradiation. <i>Journal of Renewable and Sustainable Energy</i> , 2014 , 6, 033131	2.5	10
86	Experimental determination of conduction and valence bands of semiconductor nanoparticles using Kelvin probe force microscopy. <i>Journal of Nanoparticle Research</i> , 2013 , 15, 1	2.3	11
85	Effects of aqueous stable fullerene nanocrystal (nC60) on copper (trace necessary nutrient metal): Enhanced toxicity and accumulation of copper in Daphnia magna. <i>Chemosphere</i> , 2013 , 92, 1245-52	8.4	26
84	Characterization of dissolved organic matters responsible for ultrafiltration membrane fouling in algal harvesting. <i>Algal Research</i> , 2013 , 2, 223-229	5	53
83	Surface-coating-dependent dissolution, aggregation, and reactive oxygen species (ROS) generation of silver nanoparticles under different irradiation conditions. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	64
82	Nanoparticles inhibit DNA replication by binding to DNA: modeling and experimental validation. <i>ACS Nano</i> , 2013 , 7, 9664-74	16.7	78
81	S/O-Functionalities on Modified Carbon Materials Governing Adsorption of Water Vapor. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 23057-23065	3.8	22
80	Ultra-Deep Adsorptive Desulfurization of Light-Irradiated Diesel Fuel over Supported TiO2©eO2Adsorbents. <i>Industrial & Engineering Chemistry Research</i> , 2013 , 52, 15746-15755	3.9	46
79	Stability of an H2-producing photocatalyst (Ru/(CuAg)0.15In0.3Zn1.4S2) in aqueous solution under visible light irradiation. <i>International Journal of Hydrogen Energy</i> , 2013 , 38, 1286-1296	6.7	30
78	Quantum dot binding to DNA: single-molecule imaging with atomic force microscopy. <i>Biotechnology Journal</i> , 2013 , 8, 110-6	5.6	15
77	Photocatalytic hydrogen production under visible-light irradiation on (CuAg)0.15In0.3Zn1.4S2 synthesized by precipitation and calcination. <i>Chinese Journal of Catalysis</i> , 2013 , 34, 1926-1935	11.3	21
76	The pH effects on H2 evolution kinetics for visible light water splitting over the Ru/(CuAg)0.15In0.3Zn1.4S2 photocatalyst. <i>International Journal of Hydrogen Energy</i> , 2013 , 38, 11727-11	13 6	30
75	Modeling of power generation from the mixing of simulated saline and freshwater with a reverse electrodialysis system: The effect of monovalent and multivalent ions. <i>Applied Energy</i> , 2013 , 110, 244-25	5 ^{10.7}	63

74	High-Concentration Aqueous Dispersions of MoS2. <i>Advanced Functional Materials</i> , 2013 , 23, 3577-3583	15.6	244
73	Phytotoxicity, accumulation and transport of silver nanoparticles by Arabidopsis thaliana. <i>Nanotoxicology</i> , 2013 , 7, 323-37	5.3	204
72	Photogeneration of reactive oxygen species on uncoated silver, gold, nickel, and silicon nanoparticles and their antibacterial effects. <i>Langmuir</i> , 2013 , 29, 4647-51	4	194
71	Trans-generational impact of cerium oxide nanoparticles on tomato plants. <i>Metallomics</i> , 2013 , 5, 753-9	4.5	108
7°	High performance ultrafiltration membrane composed of PVDF blended with its derivative copolymer PVDF-g-PEGMA. <i>Journal of Membrane Science</i> , 2013 , 445, 66-75	9.6	72
69	Air-Promoted Adsorptive Desulfurization over Ti0.9Ce0.1O2 Mixed Oxides from Diesel Fuel under Ambient Conditions. <i>ChemCatChem</i> , 2013 , 5, 3582-3586	5.2	17
68	Energy and Water Interdependence, and Their Implications for Urban Areas 2013 , 239-270		
67	Oxidative dissolution of polymer-coated CdSe/ZnS quantum dots under UV irradiation: mechanisms and kinetics. <i>Environmental Pollution</i> , 2012 , 164, 259-66	9.3	45
66	Interactions of 14C-labeled multi-walled carbon nanotubes with soil minerals in water. <i>Environmental Pollution</i> , 2012 , 166, 75-81	9.3	60
65	Effect of natural organic matter on the aggregation kinetics of CeO2 nanoparticles in KCl and CaCl2 solutions: measurements and modeling. <i>Journal of Hazardous Materials</i> , 2012 , 209-210, 264-70	12.8	69
64	Attachment efficiency of nanoparticle aggregation in aqueous dispersions: modeling and experimental validation. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	98
63	Low-cost antifouling PVC ultrafiltration membrane fabrication with Pluronic F 127: Effect of additives on properties and performance. <i>Desalination</i> , 2012 , 307, 26-33	10.3	124
62	Human intestinal epithelial cells exhibit a cellular response indicating a potential toxicity upon exposure to hematite nanoparticles. <i>Cell Biology and Toxicology</i> , 2012 , 28, 343-68	7.4	25
61	Surface interactions affect the toxicity of engineered metal oxide nanoparticles toward Paramecium. <i>Chemical Research in Toxicology</i> , 2012 , 25, 1675-81	4	44
60	Comparative Study on the Sulfur Tolerance and Carbon Resistance of Supported Noble Metal Catalysts in Steam Reforming of Liquid Hydrocarbon Fuel. <i>ACS Catalysis</i> , 2012 , 2, 1127-1137	13.1	49
59	Commenting on the effects of surface treated- and non-surface treated TiO(2) in the Caco-2 cell model. <i>Particle and Fibre Toxicology</i> , 2012 , 9, 42	8.4	5
58	The impact of cerium oxide nanoparticles on tomato (Solanum lycopersicum L.) and its implications for food safety. <i>Metallomics</i> , 2012 , 4, 1105-12	4.5	193
57	Low temperature plasma-mediated synthesis of graphene nanosheets for supercapacitor electrodes. <i>Journal of Materials Chemistry</i> , 2012 , 22, 6061		51

56	Application of embryonic and adult zebrafish for nanotoxicity assessment. <i>Methods in Molecular Biology</i> , 2012 , 926, 317-29	1.4	10
55	Evaluation of DLVO interaction between a sphere and a cylinder. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2012 , 415, 218-229	5.1	20
54	Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles. <i>ACS Nano</i> , 2012 , 6, 5164-73	16.7	993
53	Impacts of hematite nanoparticle exposure on biomechanical, adhesive, and surface electrical properties of Escherichia coli cells. <i>Applied and Environmental Microbiology</i> , 2012 , 78, 3905-15	4.8	60
52	Photocatalytic degradation of 2,4-dichlorophenol using nanoscale Fe/TiO2. <i>Chemical Engineering Journal</i> , 2012 , 181-182, 189-195	14.7	96
51	Modeling the primary size effects of citrate-coated silver nanoparticles on their ion release kinetics. <i>Environmental Science & Environmental Science</i>	10.3	370
50	Size effects on adsorption of hematite nanoparticles on E. coli cells. <i>Environmental Science & Environmental </i>	10.3	78
49	Imaging and Quantifying the Morphology and Nanoelectrical Properties of Quantum Dot Nanoparticles Interacting with DNA. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 599-606	3.8	30
48	Structure of Cerium Phosphate Glasses: Molecular Dynamics Simulation. <i>Journal of the American Ceramic Society</i> , 2011 , 94, 2393-2401	3.8	74
47	Local Structure of Cerium in Aluminophosphate and Silicophosphate Glasses. <i>Journal of the American Ceramic Society</i> , 2011 , 94, 2442-2451	3.8	27
46	Effects of stable aqueous fullerene nanocrystal (nC60) on Daphnia magna: evaluation of hop frequency and accumulations under different conditions. <i>Journal of Environmental Sciences</i> , 2011 , 23, 322-9	6.4	25
45	CO2 emissions embodied in China@exports from 2002 to 2008: A structural decomposition analysis. <i>Energy Policy</i> , 2011 , 39, 7381-7388	7.2	124
44	Influence of dissolved oxygen on aggregation kinetics of citrate-coated silver nanoparticles. <i>Environmental Pollution</i> , 2011 , 159, 3757-62	9.3	74
43	Disruption of zebrafish (Danio rerio) reproduction upon chronic exposure to TiOIhanoparticles. <i>Chemosphere</i> , 2011 , 83, 461-7	8.4	127
42	Aggregation kinetics of CeO2 nanoparticles in KCl and CaCl2 solutions: measurements and modeling. <i>Journal of Nanoparticle Research</i> , 2011 , 13, 6483-6491	2.3	55
41	Highly Active Catalysts of Gold Nanoparticles Supported on Three-Dimensionally Ordered Macroporous LaFeO3 for Soot Oxidation. <i>Angewandte Chemie</i> , 2011 , 123, 2374-2377	3.6	21
40	Highly active catalysts of gold nanoparticles supported on three-dimensionally ordered macroporous LaFeO3 for soot oxidation. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 2326-9	16.4	271
39	Life-cycle analysis on biodiesel production from microalgae: water footprint and nutrients balance. <i>Bioresource Technology</i> , 2011 , 102, 159-65	11	590

38	Characterization of oxygen containing functional groups on carbon materials with oxygen K-edge X-ray absorption near edge structure spectroscopy. <i>Carbon</i> , 2011 , 49, 1745-1751	10.4	40
37	Interaction force measurement between E. coli cells and nanoparticles immobilized surfaces by using AFM. <i>Colloids and Surfaces B: Biointerfaces</i> , 2011 , 82, 316-24	6	56
36	Influence of sulfur on the carbon deposition in steam reforming of liquid hydrocarbons over CeO2Al2O3 supported Ni and Rh catalysts. <i>Applied Catalysis A: General</i> , 2011 , 394, 32-40	5.1	38
35	Growth and lipid accumulation properties of a freshwater microalga, Chlorella ellipsoidea YJ1, in domestic secondary effluents. <i>Applied Energy</i> , 2011 , 88, 3295-3299	10.7	85
34	Adsorption of hematite nanoparticles onto Caco-2 cells and the cellular impairments: effect of particle size. <i>Nanotechnology</i> , 2010 , 21, 355103	3.4	41
33	Gigaton problems need gigaton solutions. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	22
32	Toxicity and bioaccumulation of TiO2 nanoparticle aggregates in Daphnia magna. <i>Chemosphere</i> , 2010 , 78, 209-15	8.4	381
31	Trophic transfer of TiO(2) nanoparticles from Daphnia to zebrafish in a simplified freshwater food chain. <i>Chemosphere</i> , 2010 , 79, 928-33	8.4	207
30	Achieving Ferromagnetism in Single-Crystalline ZnS Wurtzite Nanowires via Chromium Doping. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 12099-12103	3.8	27
29	Sulfur poisoning mechanism of steam reforming catalysts: an X-ray absorption near edge structure (XANES) spectroscopic study. <i>Physical Chemistry Chemical Physics</i> , 2010 , 12, 5707-11	3.6	65
28	Toxicity and cellular responses of intestinal cells exposed to titanium dioxide. <i>Cell Biology and Toxicology</i> , 2010 , 26, 225-38	7.4	161
27	Sulfur poisoning of CeO2Al2O3-supported mono- and bi-metallic Ni and Rh catalysts in steam reforming of liquid hydrocarbons at low and high temperatures. <i>Applied Catalysis A: General</i> , 2010 , 390, 210-218	5.1	53
26	Harvesting algal biomass for biofuels using ultrafiltration membranes. <i>Bioresource Technology</i> , 2010 , 101, 5297-304	11	256
25	Do all wurtzite nanotubes prefer faceted ones?. Journal of Chemical Physics, 2009, 130, 204706	3.9	38
24	Acute toxicities of six manufactured nanomaterial suspensions to Daphnia magna. <i>Journal of Nanoparticle Research</i> , 2009 , 11, 67-75	2.3	267
23	Evaluation of an innovative polyvinyl chloride (PVC) ultrafiltration membrane for wastewater treatment. <i>Separation and Purification Technology</i> , 2009 , 70, 71-78	8.3	69
22	Influence of titanium dioxide nanoparticles on speciation and bioavailability of arsenite. <i>Environmental Pollution</i> , 2009 , 157, 1165-70	9.3	107
21	Effects of aqueous stable fullerene nanocrystals (nC60) on Daphnia magna: evaluation of sub-lethal reproductive responses and accumulation. <i>Chemosphere</i> , 2009 , 77, 1482-7	8.4	72

20	Experimental approach for an in vitro toxicity assay with non-aggregated quantum dots. <i>Toxicology in Vitro</i> , 2009 , 23, 955-62	3.6	34
19	Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles. <i>Water Research</i> , 2009 , 43, 4249-57	12.5	448
18	The impact of ZnO nanoparticle aggregates on the embryonic development of zebrafish (Danio rerio). <i>Nanotechnology</i> , 2009 , 20, 195103	3.4	206
17	Stability and removal of water soluble CdTe quantum dots in water. <i>Environmental Science & Environmental Science & Technology</i> , 2008 , 42, 321-5	10.3	91
16	Stability of commercial metal oxide nanoparticles in water. Water Research, 2008, 42, 2204-12	12.5	467
15	Toxicity assessment of manufactured nanomaterials using the unicellular green alga Chlamydomonas reinhardtii. <i>Chemosphere</i> , 2008 , 73, 1121-8	8.4	175
14	Size- and Surface-dependent Stability, Electronic Properties, and Potential as Chemical Sensors: Computational Studies on One-dimensional ZnO Nanostructures. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 13926-13931	3.8	63
13	Oxidative stress and growth inhibition in the freshwater fish Carassius auratus induced by chronic exposure to sublethal fullerene aggregates. <i>Environmental Toxicology and Chemistry</i> , 2008 , 27, 1979-85	3.8	107
12	Fabrication of uniform size titanium oxide nanotubes: Impact of current density and solution conditions. <i>Scripta Materialia</i> , 2007 , 56, 373-376	5.6	88
11	Enhanced Accumulation of Arsenate in Carp in the Presence of Titanium Dioxide Nanoparticles. <i>Water, Air, and Soil Pollution</i> , 2007 , 178, 245-254	2.6	123
10	Energetics and electronic structures of AlN nanotubes/wires and their potential application as ammonia sensors. <i>Nanotechnology</i> , 2007 , 18, 424023	3.4	67
9	Enhanced bioaccumulation of cadmium in carp in the presence of titanium dioxide nanoparticles. <i>Chemosphere</i> , 2007 , 67, 160-6	8.4	252
8	Mathematical model for photocatalytic destruction of organic contaminants in air. <i>Journal of the Air and Waste Management Association</i> , 2007 , 57, 1112-22	2.4	3
7	Preparation of a novel TiO2-based p-n junction nanotube photocatalyst. <i>Environmental Science & Environmental </i>	10.3	264
6	Dissolution of Single-Walled Carbon Nanotubes. <i>Advanced Materials</i> , 1999 , 11, 834-840	24	521
5	The First Structurally Characterized Homofullerene (Fulleroid). <i>Journal of the American Chemical Society</i> , 1999 , 121, 7971-7972	16.4	49
4	Solution properties of single-walled carbon nanotubes. <i>Science</i> , 1998 , 282, 95-8	33.3	2120
3	Properties of Commercial Nanoparticles that Affect Their Removal During Water Treatment69-90		5

Biowaste-Derived, Hyperbranched Dendritic EDTA Analogue as an Anionic Biochelator with Superior Metal Affinity. ACS Sustainable Chemistry and Engineering,

8.3 1

Dynamically Controlled Environment Agriculture: Integrating Machine Learning and Mechanistic and Physiological Models for Sustainable Food Cultivation. *ACS ES&T Engineering*,

3