
Tom Dunkley Jones

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6950024/publications.pdf Version: 2024-02-01

TOM DUNKLEY LONES

#	Article	IF	CITATIONS
1	Late Neogene evolution of modern deep-dwelling plankton. Biogeosciences, 2022, 19, 743-762.	3.3	11
2	DeepMIP: model intercomparison of early Eocene climatic optimum (EECO) large-scale climate features and comparison with proxy data. Climate of the Past, 2021, 17, 203-227.	3.4	71
3	The Eoceneâ ``Oligocene transition in Nanggulan, Java: lithostratigraphy, biostratigraphy and foraminiferal stable isotopes. Journal of the Geological Society, 2021, 178, .	2.1	2
4	Biotic and stable-isotope characterization of the Toarcian Ocean Anoxic Event through a carbonate–clastic sequence from Somerset, UK. Geological Society Special Publication, 2021, 514, 239-268.	1.3	3
5	Adaptations of Coccolithophore Size to Selective Pressures During the Oligocene to Early Miocene High CO ₂ World. Paleoceanography and Paleoclimatology, 2020, 35, e2020PA003918.	2.9	7
6	Global mean surface temperature and climate sensitivity of the early Eocene Climatic Optimum (EECO), Paleocene–Eocene Thermal Maximum (PETM), and latest Paleocene. Climate of the Past, 2020, 16, 1953-1968.	3.4	71
7	OPTiMAL: a new machine learning approach for GDGT-based palaeothermometry. Climate of the Past, 2020, 16, 2599-2617.	3.4	14
8	Organic-walled dinoflagellate cyst biostratigraphy of the upper Eocene to lower Oligocene Yazoo Formation, US Gulf Coast. Journal of Micropalaeontology, 2020, 39, 1-26.	3.6	2
9	The DeepMIP contribution to PMIP4: methodologies for selection, compilation and analysis of latest Paleocene and early Eocene climate proxy data, incorporating version 0.1 of the DeepMIP database. Geoscientific Model Development, 2019, 12, 3149-3206.	3.6	131
10	Delayed sedimentary response to abrupt climate change at the Paleocene-Eocene boundary, northern Spain. Geology, 2019, 47, 159-162.	4.4	32
11	Lowâ€Latitude Calcareous Nannofossil Response in the Indoâ€Pacific Warm Pool Across the Eoceneâ€Oligocene Transition of Java, Indonesia. Paleoceanography and Paleoclimatology, 2019, 34, 1833-1847.	2.9	9
12	Large Igneous Province thermogenic greenhouse gas flux could have initiated Paleocene-Eocene Thermal Maximum climate change. Nature Communications, 2019, 10, 5547.	12.8	33
13	Calcareous nannofossil assemblages of the Late Cretaceous Fiqa Formation, north Oman. Journal of Micropalaeontology, 2019, 38, 25-54.	3.6	2
14	Dynamics of sediment flux to a bathyal continental margin section through the Paleocene–Eocene Thermal Maximum. Climate of the Past, 2018, 14, 1035-1049.	3.4	26
15	The impact of Cenozoic cooling on assemblage diversity in planktonic foraminifera. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150224.	4.0	34
16	Environmental Predictors of Diversity in Recent Planktonic Foraminifera as Recorded in Marine Sediments. PLoS ONE, 2016, 11, e0165522.	2.5	26
17	Reply to comment on "Magnitude and profile of organic carbon isotope records from the Paleocene–Eocene Thermal Maximum: Evidence from northern Spain―by Manners et al. [Earth Planet. Sci. Lett. 376 (2013) 220–230]. Earth and Planetary Science Letters, 2014, 395, 294-295.	4.4	1
18	Trace metal (Mg/Ca and Sr/Ca) analyses of single coccoliths by Secondary Ion Mass Spectrometry. Geochimica Et Cosmochimica Acta, 2014, 146, 90-106.	3.9	22

TOM DUNKLEY JONES

#	Article	IF	CITATIONS
19	The Paleoceneâ€Eocene Thermal Maximum: How much carbon is enough?. Paleoceanography, 2014, 29, 946-963.	3.0	27
20	Climate model and proxy data constraints on ocean warming across the Paleocene–Eocene Thermal Maximum. Earth-Science Reviews, 2013, 125, 123-145.	9.1	214
21	Magnitude and profile of organic carbon isotope records from the Paleocene–Eocene Thermal Maximum: Evidence from northern Spain. Earth and Planetary Science Letters, 2013, 376, 220-230.	4.4	35
22	Temporal buffering of climate-driven sediment flux cycles by transient catchment response. Earth and Planetary Science Letters, 2013, 369-370, 200-210.	4.4	85
23	A Cenozoic record of the equatorial Pacific carbonate compensation depth. Nature, 2012, 488, 609-614.	27.8	342
24	A model–data comparison for a multi-model ensemble of early Eocene atmosphere–ocean simulations: EoMIP. Climate of the Past, 2012, 8, 1717-1736.	3.4	196
25	Comment on "What do we know about the evolution of Mg to Ca ratios in seawater?―by Wally Broecker and Jimin Yu. Paleoceanography, 2011, 26, .	3.0	9
26	Comment on "Calcareous Nannoplankton Response to Surface-Water Acidification Around Oceanic Anoxic Event 1a― Science, 2011, 332, 175-175.	12.6	16
27	The micropalaeontological record of global change. Journal of Micropalaeontology, 2011, 30, 95-96.	3.6	0
28	A Palaeogene perspective on climate sensitivity and methane hydrate instability. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2010, 368, 2395-2415.	3.4	71
29	Gas hydrates: past and future geohazard?. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2010, 368, 2369-2393.	3.4	203
30	CO2-driven ocean circulation changes as an amplifier of Paleocene-Eocene thermal maximum hydrate destabilization. Geology, 2010, 38, 875-878.	4.4	100
31	A PALAEOGENE RECORD OF EXTANT LOWER PHOTIC ZONE CALCAREOUS NANNOPLANKTON. Palaeontology, 2009, 52, 457-469.	2.2	8
32	Exceptionally well preserved upper Eocene to lower Oligocene calcareous nannofossils (Prymnesiophyceae) from the Pande Formation (Kilwa Group), Tanzania. Journal of Systematic Palaeontology, 2009, 7, 359-411.	1.5	26
33	Major shifts in calcareous phytoplankton assemblages through the Eoceneâ€Oligocene transition of Tanzania and their implications for low″atitude primary production. Paleoceanography, 2008, 23, .	3.0	71
34	Extinction and environmental change across the Eocene-Oligocene boundary in Tanzania. Geology, 2008, 36, 179.	4.4	140
35	A Paleogene calcareous microfossil Konservat-Lagerstatte from the Kilwa Group of coastal Tanzania. Bulletin of the Geological Society of America, 2008, 120, 3-12.	3.3	60
36	Salterella and Volborthella from the Early Cambrian of Spitsbergen: the evolution of agglutinating organisms during the Neoproterozoic-Cambrian transition. Micropaleontology, 2007, 53, 331-342.	1.0	2

#	Article	IF	CITATIONS
37	Post-sampling dissolution and the consistency of nannofossil diversity measures: A case study from freshly cored sediments of coastal Tanzania. Marine Micropaleontology, 2007, 62, 254-268.	1.2	10
38	Stratigraphy and sedimentology of the Upper Cretaceous to Paleogene Kilwa Group, southern coastal Tanzania. Journal of African Earth Sciences, 2006, 45, 431-466.	2.0	77