LiuMingxian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6949292/publications.pdf

Version: 2024-02-01

41258 82410 6,342 74 49 citations h-index g-index papers

74 74 74 5782 docs citations times ranked citing authors all docs

72

#	Article	IF	CITATIONS
1	Nanocarbonâ€Based Materials for Flexible Allâ€Solidâ€State Supercapacitors. Advanced Materials, 2018, 30, e1705489.	11.1	330
2	Development of MnO ₂ /porous carbon microspheres with a partially graphitic structure for high performance supercapacitor electrodes. Journal of Materials Chemistry A, 2014, 2, 2555-2562.	5.2	292
3	Recent advances in carbon-based supercapacitors. Materials Advances, 2020, 1, 945-966.	2.6	207
4	Ultrahigh energy density of aÂN, O codoped carbon nanosphere based all-solid-state symmetric supercapacitor. Journal of Materials Chemistry A, 2019, 7, 1177-1186.	5.2	188
5	A facile synthesis of a novel mesoporous Ge@C sphere anode with stable and high capacity for lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 17107-17114.	5.2	180
6	Selfâ€Assembled Carbon Superstructures Achieving Ultraâ€Stable and Fast Protonâ€Coupled Charge Storage Kinetics. Advanced Materials, 2021, 33, e2104148.	11.1	174
7	A novel synthesis of hierarchical porous carbons from interpenetrating polymer networks for high performance supercapacitor electrodes. Carbon, 2017, 111, 667-674.	5.4	165
8	Core–shell ultramicroporous@microporous carbon nanospheres as advanced supercapacitor electrodes. Journal of Materials Chemistry A, 2015, 3, 11517-11526.	5.2	163
9	Encapsulation of NiO nanoparticles in mesoporous carbon nanospheres for advanced energy storage. Chemical Engineering Journal, 2017, 308, 240-247.	6.6	163
10	Mesoporous size controllable carbon microspheres and their electrochemical performances for supercapacitor electrodes. Journal of Materials Chemistry A, 2014, 2, 8407-8415.	5.2	161
11	Cooking carbon with protic salt: Nitrogen and sulfur self-doped porous carbon nanosheets for supercapacitors. Chemical Engineering Journal, 2018, 347, 233-242.	6.6	160
12	Template-Free, Self-Doped Approach to Porous Carbon Spheres with High N/O Contents for High-Performance Supercapacitors. ACS Sustainable Chemistry and Engineering, 2019, 7, 7024-7034.	3.2	147
13	Nitrogen-containing carbon microspheres for supercapacitor electrodes. Electrochimica Acta, 2015, 158, 166-174.	2.6	145
14	Poly(ionic liquid)-derived, N, S-codoped ultramicroporous carbon nanoparticles for supercapacitors. Chemical Engineering Journal, 2017, 317, 651-659.	6.6	140
15	Core–shell reduced graphene oxide/MnO @carbon hollow nanospheres for high performance supercapacitor electrodes. Chemical Engineering Journal, 2017, 313, 518-526.	6.6	137
16	Synergistic design of aÂN, O co-doped honeycomb carbon electrode and an ionogel electrolyte enabling all-solid-state supercapacitors with an ultrahigh energy density. Journal of Materials Chemistry A, 2019, 7, 816-826.	5.2	134
17	Nitrogen-containing ultramicroporous carbon nanospheres for high performance supercapacitor electrodes. Electrochimica Acta, 2016, 205, 132-141.	2.6	130
18	A general strategy to synthesize high-level N-doped porous carbons <i>via</i> Schiff-base chemistry for supercapacitors. Journal of Materials Chemistry A, 2018, 6, 12334-12343.	5.2	130

#	Article	IF	Citations
19	Ternary-doped carbon electrodes for advanced aqueous solid-state supercapacitors based on a "water-in-salt―gel electrolyte. Journal of Materials Chemistry A, 2019, 7, 15801-15811.	5.2	130
20	<i>In situ</i> nanoarchitecturing of conjugated polyamide network-derived carbon cathodes toward high energy-power Zn-ion capacitors. Journal of Materials Chemistry A, 2022, 10, 611-621.	5. 2	117
21	lonic Liquids for Supercapacitive Energy Storage: A Mini-Review. Energy & E	2.5	115
22	Carbon hydrangeas with typical ionic liquid matched pores for advanced supercapacitors. Carbon, 2020, 168, 499-507.	5.4	110
23	N, S Co-doped hierarchical porous carbon rods derived from protic salt: Facile synthesis for high energy density supercapacitors. Electrochimica Acta, 2018, 274, 378-388.	2.6	105
24	High-energy flexible solid-state supercapacitors based on O, N, S-tridoped carbon electrodes and a 3.5â€√ gel-type electrolyte. Chemical Engineering Journal, 2019, 372, 1216-1225.	6.6	103
25	Deep-eutectic-solvent synthesis of N/O self-doped hollow carbon nanorods for efficient energy storage. Chemical Communications, 2019, 55, 11219-11222.	2.2	101
26	Synthesis of micro- and mesoporous carbon spheres for supercapacitor electrode. Journal of Solid State Electrochemistry, 2013, 17, 2293-2301.	1.2	98
27	Design of carbon materials with ultramicro-, supermicro- and mesopores using solvent- and self-template strategy for supercapacitors. Microporous and Mesoporous Materials, 2017, 253, 1-9.	2.2	91
28	Core-shell hierarchical porous carbon spheres with N/O doping for efficient energy storage. Electrochimica Acta, 2020, 358, 136899.	2.6	90
29	Anionic Coâ€insertion Charge Storage in Dinitrobenzene Cathodes for Highâ€Performance Aqueous Zinc–Organic Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	89
30	A robust strategy of solvent choice to synthesize optimal nanostructured carbon for efficient energy storage. Carbon, 2021, 180, 135-145.	5.4	88
31	Improving the pore-ion size compatibility between poly(ionic liquid)-derived carbons and high-voltage electrolytes for high energy-power supercapacitors. Chemical Engineering Journal, 2020, 382, 122945.	6.6	81
32	Nitrogen-doped porous carbons with nanofiber-like structure derived from poly (aniline-co-p-phenylenediamine) for supercapacitors. Electrochimica Acta, 2017, 224, 17-24.	2.6	79
33	A universal strategy to obtain highly redox-active porous carbons for efficient energy storage. Journal of Materials Chemistry A, 2020, 8, 3717-3725.	5.2	79
34	Highly active N, O-doped hierarchical porous carbons for high-energy supercapacitors. Chinese Chemical Letters, 2020, 31, 1226-1230.	4.8	78
35	Hydrangea-like N/O codoped porous carbons for high-energy supercapacitors. Chemical Engineering Journal, 2020, 388, 124208.	6.6	75
36	Enlargement of uniform micropores in hierarchically ordered micro–mesoporous carbon for high level decontamination of bisphenol A. Journal of Materials Chemistry A, 2014, 2, 8534.	5.2	73

#	Article	IF	CITATIONS
37	Spatial Confinement Strategy for Micelle-Size-Mediated Modulation of Mesopores in Hierarchical Porous Carbon Nanosheets with an Efficient Capacitive Response. ACS Applied Materials & Discrete Lamp; Interfaces, 2022, 14, 33328-33339.	4.0	73
38	Nitrogen-Enriched Hollow Porous Carbon Nanospheres with Tailored Morphology and Microstructure for All-Solid-State Symmetric Supercapacitors. ACS Applied Energy Materials, 2018, 1, 4293-4303.	2.5	72
39	Facile construction of highly redox active carbons with regular micropores and rod-like morphology towards high-energy supercapacitors. Materials Chemistry Frontiers, 2021, 5, 3061-3072.	3.2	69
40	Ultramicroporous carbon nanoparticles derived from metal–organic framework nanoparticles for high-performance supercapacitors. Materials Chemistry and Physics, 2018, 211, 234-241.	2.0	68
41	Boron â€ægluing―nitrogen heteroatoms in a prepolymerized ionic liquid-based carbon scaffold for durable supercapacitive activity. Journal of Materials Chemistry A, 2021, 9, 2714-2724.	5.2	67
42	Highly N/O co-doped ultramicroporous carbons derived from nonporous metal-organic framework for high performance supercapacitors. Chinese Chemical Letters, 2021, 32, 1491-1496.	4.8	65
43	Modification of microfiltration membranes by alkoxysilane polycondensation induced quaternary ammonium compounds grafting for biofouling mitigation. Journal of Membrane Science, 2018, 549, 165-172.	4.1	64
44	Schiff-Base/Resin Copolymer under Hypersaline Condition to High-Level N-Doped Porous Carbon Nanosheets for Supercapacitors. ACS Applied Nano Materials, 2018, 1, 4998-5007.	2.4	63
45	Thio-groups decorated covalent triazine frameworks for selective mercury removal. Journal of Hazardous Materials, 2021, 403, 123702.	6.5	60
46	A seeded synthetic strategy for uniform polymer and carbon nanospheres with tunable sizes for high performance electrochemical energy storage. Chemical Communications, 2013, 49, 3043.	2.2	58
47	From interpenetrating polymer networks to hierarchical porous carbons for advanced supercapacitor electrodes. Chinese Chemical Letters, 2019, 30, 1445-1449.	4.8	58
48	Adapting a Kinetics-Enhanced Carbon Nanostructure to Li/Na Hybrid Water-in-Salt Electrolyte for High-Energy Aqueous Supercapacitors. ACS Applied Energy Materials, 2021, 4, 5727-5737.	2.5	57
49	Development of a moving-bed electrochemical membrane bioreactor to enhance removal of low-concentration antibiotic from wastewater. Bioresource Technology, 2019, 293, 122022.	4.8	53
50	High-energy aqueous supercapacitors enabled by N/O codoped carbon nanosheets and "water-in-salt― electrolyte. Chinese Chemical Letters, 2022, 33, 2681-2686.	4.8	50
51	Unraveling the role of solvent–precursor interaction in fabricating heteroatomic carbon cathode for high-energy-density Zn-ion storage. Journal of Materials Chemistry A, 2022, 10, 9837-9847.	5. 2	47
52	Kinetics-driven design of 3D VN/MXene composite structure for superior zinc storage and charge transfer. Journal of Power Sources, 2022, 536, 231512.	4.0	47
53	Polyvinylidene fluoride membrane blended with quaternary ammonium compound for enhancing anti-biofouling properties: Effects of dosage. Journal of Membrane Science, 2016, 520, 66-75.	4.1	43
54	Impacts of quaternary ammonium compounds on membrane bioreactor performance: Acute and chronic responses of microorganisms. Water Research, 2018, 134, 153-161.	5.3	43

#	Article	IF	Citations
55	Grafting Free Carboxylic Acid Groups onto the Pore Surface of 3D Porous Coordination Polymers for High Proton Conductivity. Chemistry of Materials, 2019, 31, 8494-8503.	3.2	40
56	Water-in-salt electrolyte ion-matched N/O codoped porous carbons for high-performance supercapacitors. Chinese Chemical Letters, 2020, 31, 579-582.	4.8	39
57	Three-dimensional hierarchical porous carbon derived from resorcinol formaldehyde-zinc tatrate/poly(styrene-maleic anhydride) for high performance supercapacitor electrode. Journal of Alloys and Compounds, 2021, 886, 161176.	2.8	39
58	Porous carbon globules with moss-like surfaces from semi-biomass interpenetrating polymer network for efficient charge storage. Chinese Chemical Letters, 2021, 32, 3811-3816.	4.8	38
59	A novel liposome-encapsulated hemoglobin/silica nanoparticle as an oxygen carrier. International Journal of Pharmaceutics, 2012, 427, 354-357.	2.6	35
60	High surface area ordered mesoporous carbon for high-level removal of rhodamine B. Journal of Materials Science, 2013, 48, 8003-8013.	1.7	31
61	Trapping precursor-level functionalities in hierarchically porous carbons prepared by a pre-stabilization route for superior supercapacitors. Chinese Chemical Letters, 2023, 34, 107304.	4.8	31
62	Supramolecular Core–Shell Nanosilica@Liposome Nanocapsules for Drug Delivery. Langmuir, 2012, 28, 10725-10732.	1.6	29
63	From dual-aerogels with semi-interpenetrating polymer network structure to hierarchical porous carbons for advanced supercapacitor electrodes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 649, 129356.	2.3	28
64	Anionic Coâ€insertion Charge Storage in Dinitrobenzene Cathodes for Highâ€Performance Aqueous Zinc–Organic Batteries. Angewandte Chemie, 2022, 134, .	1.6	22
65	One-pot assembly of silica@two polymeric shells for synthesis of hollow carbon porous nanospheres: Adsorption of bisphenol A. Materials Letters, 2014, 120, 108-110.	1.3	20
66	Preparation and characterization of silica-titania aerogel-like balls by ambient pressure drying. Journal of Sol-Gel Science and Technology, 2007, 41, 203-207.	1.1	19
67	Merging <i>N</i> à€Hydroxyphthalimide into Metalâ€Organic Frameworks for Highly Efficient and Environmentally Benign Aerobic Oxidation. Chemistry - A European Journal, 2021, 27, 9674-9685.	1.7	15
68	Self-Assembly of CdTe Nanocrystals into Two-Dimensional Nanoarchitectures at the Airâ^'Liquid Interface Induced by Gemini Surfactant of 1,3-Bis(hexadecyldimethylammonium) Propane Dibromide. Journal of Physical Chemistry C, 2008, 112, 6689-6694.	1.5	14
69	Effective Removal of Sulfanilic Acid From Water Using a Low-Pressure Electrochemical RuO2-TiO2@Ti/PVDF Composite Membrane. Frontiers in Chemistry, 2018, 6, 395.	1.8	12
70	Delicate and Fast Photochemical Surface Modification of 2D Photoresponsive Organosilicon Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2022, 61, e202204568.	7.2	12
71	Tuned surface area and mesopore diameter of ordered mesoporous carbon: ultrahigh decontamination of di(2-ethylhexyl)phthalate. RSC Advances, 2014, 4, 23853-23860.	1.7	8
72	Template-Engaged In Situ Synthesis of Carbon-Doped Monoclinic Mesoporous BiVO4: Photocatalytic Treatment of Rhodamine B. Journal of Materials Engineering and Performance, 2015, 24, 2359-2367.	1.2	5

LiuMingxian

#	Article	IF	CITATIONS
73	Crystal structure of dibromidotetrakis(propan-2-ol-κO)nickel(II). Acta Crystallographica Section E: Crystallographic Communications, 2015, 71, m263-m264.	0.2	o
74	Delicate and Fast Photochemical Surface Modification of 2D Photoresponsive Organosilicon Metalâ€'Organic Frameworks. Angewandte Chemie, 0, , .	1.6	0