Chun-Yang Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6948927/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rational design of ROS-responsive nanocarriers for targeted X-ray-induced photodynamic therapy and cascaded chemotherapy of intracranial glioblastoma. Nanoscale, 2022, 14, 5054-5067.	5.6	11
2	Tumor acidity/redox hierarchical-activable nanoparticles for precise combination of X-ray-induced photodynamic therapy and hypoxia-activated chemotherapy. Journal of Materials Chemistry B, 2022, 10, 3849-3860.	5.8	8
3	Tumor pH-triggered "charge conversion―nanocarriers with on-demand drug release for precise cancer therapy. Journal of Materials Chemistry B, 2020, 8, 9351-9361.	5.8	9
4	Ditelluride-Bridged PEC-PCL Copolymer as Folic Acid-Targeted and Redox-Responsive Nanoparticles for Enhanced Cancer Therapy. Frontiers in Chemistry, 2020, 8, 156.	3.6	21
5	Highly-controllable drug release from core cross-linked singlet oxygen-responsive nanoparticles for cancer therapy. RSC Advances, 2020, 10, 19997-20008.	3.6	8
6	Light-activated drug release from a hyaluronic acid targeted nanoconjugate for cancer therapy. Journal of Materials Chemistry B, 2019, 7, 4843-4853.	5.8	26
7	Polyphosphoester-Based Nanocarrier for Combined Radio-Photothermal Therapy of Breast Cancer. ACS Biomaterials Science and Engineering, 2019, 5, 1868-1877.	5.2	9
8	ROS-sensitive thioketal-linked polyphosphoester-doxorubicin conjugate for precise phototriggered locoregional chemotherapy. Biomaterials, 2019, 188, 74-82.	11.4	148
9	Photoinduced PEG deshielding from ROS-sensitive linkage-bridged block copolymer-based nanocarriers for on-demand drug delivery. Biomaterials, 2018, 170, 147-155.	11.4	93
10	ROS-Sensitive Polymeric Nanocarriers with Red Light-Activated Size Shrinkage for Remotely Controlled Drug Release. Chemistry of Materials, 2018, 30, 517-525.	6.7	100
11	Cascade-amplifying synergistic effects of chemo-photodynamic therapy using ROS-responsive polymeric nanocarriers. Theranostics, 2018, 8, 2939-2953.	10.0	87
12	A micellar cisplatin prodrug simultaneously eliminates both cancer cells and cancer stem cells in lung cancer. Biomaterials Science, 2017, 5, 1612-1621.	5.4	24
13	Three-Dimensional Nanofiber Hybrid Scaffold Directs and Enhances Axonal Regeneration after Spinal Cord Injury. ACS Biomaterials Science and Engineering, 2016, 2, 1319-1329.	5.2	40
14	Facile Generation of Tumorâ€pH‣abile Linkageâ€Bridged Block Copolymers for Chemotherapeutic Delivery. Angewandte Chemie, 2016, 128, 1022-1026.	2.0	35
15	Overcoming tumor resistance to cisplatin by cationic lipid-assisted prodrug nanoparticles. Biomaterials, 2016, 94, 9-19.	11.4	47
16	NIRâ€Activated Supersensitive Drug Release Using Nanoparticles with a Flow Core. Advanced Functional Materials, 2016, 26, 7516-7525.	14.9	72
17	Facile Generation of Tumorâ€pH‣abile Linkageâ€Bridged Block Copolymers for Chemotherapeutic Delivery. Angewandte Chemie - International Edition, 2016, 55, 1010-1014.	13.8	133
18	Stimuli-responsive clustered nanoparticles for improved tumor penetration and therapeutic efficacy. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4164-4169.	7.1	617

CHUN-YANG SUN

#	Article	IF	CITATIONS
19	Tumor acidity-sensitive linkage-bridged block copolymer for therapeutic siRNA delivery. Biomaterials, 2016, 88, 48-59.	11.4	98
20	Regulation of hydrophobicity of polyphosphoester based drug delivery system for enhanced cancer therapy. Journal of Controlled Release, 2015, 213, e23.	9.9	1
21	Galactose and near infrared fluorescence probe conjugated pH-responsive copolymer for imaging of drug delivery. Journal of Controlled Release, 2015, 213, e72-e73.	9.9	1
22	Ultrathin carbon layer coated MoO ₂ nanoparticles for high-performance near-infrared photothermal cancer therapy. Chemical Communications, 2015, 51, 10054-10057.	4.1	51
23	Stable metallic 1T-WS2 ultrathin nanosheets as a promising agent for near-infrared photothermal ablation cancer therapy. Nano Research, 2015, 8, 3982-3991.	10.4	50
24	Redox-Responsive Polyphosphoester-Based Micellar Nanomedicines for Overriding Chemoresistance in Breast Cancer Cells. ACS Applied Materials & Interfaces, 2015, 7, 26315-26325.	8.0	48
25	Tumor Acidity-Sensitive Polymeric Vector for Active Targeted siRNA Delivery. Journal of the American Chemical Society, 2015, 137, 15217-15224.	13.7	312
26	Galactose Targeted pH-Responsive Copolymer Conjugated with Near Infrared Fluorescence Probe for Imaging of Intelligent Drug Delivery. ACS Applied Materials & Interfaces, 2015, 7, 2104-2115.	8.0	70
27	Regulating the surface poly(ethylene glycol) density of polymeric nanoparticles and evaluating its role in drug delivery inAvivo. Biomaterials, 2015, 69, 1-11.	11.4	88
28	A block copolymer of zwitterionic polyphosphoester and polylactic acid for drug delivery. Biomaterials Science, 2015, 3, 1105-1113.	5.4	29
29	Co-delivery of platinum drug and siNotch1 with micelleplex for enhanced hepatocellular carcinoma therapy. Biomaterials, 2015, 70, 71-83.	11.4	43
30	Delivery of Mitogen-Activated Protein Kinase Inhibitor for Hepatocellular Carcinoma Stem Cell Therapy. ACS Applied Materials & Interfaces, 2015, 7, 1012-1020.	8.0	9
31	Biocompatible Conjugated Polymer Nanoparticles for Efficient Photothermal Tumor Therapy. Small, 2015, 11, 1603-1610.	10.0	168
32	Effect of Hydrophobicity of Core on the Anticancer Efficiency of Micelles as Drug Delivery Carriers. ACS Applied Materials & Interfaces, 2014, 6, 22709-22718.	8.0	44
33	Cancer stem cell therapy using doxorubicin conjugated to gold nanoparticles via hydrazone bonds. Biomaterials, 2014, 35, 836-845.	11.4	150
34	Shell-detachable nanoparticles based on a light-responsive amphiphile for enhanced siRNA delivery. RSC Advances, 2014, 4, 1961-1964.	3.6	20
35	Matrix metalloproteinase 2-responsive micelle for siRNA delivery. Biomaterials, 2014, 35, 7622-7634.	11.4	102
36	ScFvâ€Decorated PEGâ€PLAâ€Based Nanoparticles for Enhanced siRNA Delivery to Her2 ⁺ Breast Cancer. Advanced Healthcare Materials, 2014, 3, 1792-1803.	7.6	35

CHUN-YANG SUN

#	Article	IF	CITATIONS
37	Doxorubicin Conjugate of Poly(Ethylene Glycol)â€ <i>Block</i> â€Polyphosphoester for Cancer Therapy. Advanced Healthcare Materials, 2014, 3, 261-272.	7.6	64
38	Polymericâ€Micelleâ€Based Nanomedicine for siRNA Delivery. Particle and Particle Systems Characterization, 2013, 30, 211-228.	2.3	34
39	Achieving a New Controllable Male Contraception by the Photothermal Effect of Gold Nanorods. Nano Letters, 2013, 13, 2477-2484.	9.1	31
40	Enhancement of lipopolysaccharide-induced nitric oxide and interleukin-6 production by PEGylated gold nanoparticles in RAW264.7 cells. Nanoscale, 2012, 4, 7135.	5.6	46
41	In Vitro and In Vivo Nearâ€Infrared Photothermal Therapy of Cancer Using Polypyrrole Organic Nanoparticles. Advanced Materials, 2012, 24, 5586-5592.	21.0	684
42	Tumor pH-Responsive Nanocarriers With Light-Activatable Drug Release for Chemo-Photodynamic Therapy of Breast Cancer. Frontiers in Chemistry, 0, 10, .	3.6	1