
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/694884/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                   | lF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Microbial production of medium-chain-length α, ω-diols via two-stage process under mild conditions.<br>Bioresource Technology, 2022, 352, 127111.                                                                                         | 4.8 | 4         |
| 2  | The transition of <i>Rhodobacter sphaeroides</i> into a microbial cell factory. Biotechnology and Bioengineering, 2021, 118, 531-541.                                                                                                     | 1.7 | 23        |
| 3  | Metabolic energy conservation for fermentative product formation. Microbial Biotechnology, 2021, 14, 829-858.                                                                                                                             | 2.0 | 12        |
| 4  | A navigation guide of synthetic biology tools for Pseudomonas putida. Biotechnology Advances, 2021,<br>49, 107732.                                                                                                                        | 6.0 | 48        |
| 5  | Co-production of hydrogen and ethyl acetate in Escherichia coli. Biotechnology for Biofuels, 2021, 14,<br>192.                                                                                                                            | 6.2 | 8         |
| 6  | Genetic engineering of microalgae for enhanced lipid production. Biotechnology Advances, 2021, 52,<br>107836.                                                                                                                             | 6.0 | 52        |
| 7  | When metabolic prowess is too much of a good thing: how carbon catabolite repression and<br>metabolic versatility impede production of esterified I±,ï‰-diols in Pseudomonas putida KT2440.<br>Biotechnology for Biofuels, 2021, 14, 218. | 6.2 | 7         |
| 8  | Metabolic flux ratio analysis by parallel 13C labeling of isoprenoid biosynthesis in Rhodobacter sphaeroides. Metabolic Engineering, 2020, 57, 228-238.                                                                                   | 3.6 | 9         |
| 9  | Eat1-Like Alcohol Acyl Transferases From Yeasts Have High Alcoholysis and Thiolysis Activity.<br>Frontiers in Microbiology, 2020, 11, 579844.                                                                                             | 1.5 | 7         |
| 10 | Growth-uncoupled isoprenoid synthesis in Rhodobacter sphaeroides. Biotechnology for Biofuels, 2020, 13, 123.                                                                                                                              | 6.2 | 15        |
| 11 | Applying Non-canonical Redox Cofactors in Fermentation Processes. IScience, 2020, 23, 101471.                                                                                                                                             | 1.9 | 11        |
| 12 | Functional replacement of isoprenoid pathways in Rhodobacter sphaeroides. Microbial<br>Biotechnology, 2020, 13, 1082-1093.                                                                                                                | 2.0 | 14        |
| 13 | From Eat to trEat: engineering the mitochondrial Eat1 enzyme for enhanced ethyl acetate production in Escherichia coli. Biotechnology for Biofuels, 2020, 13, 76.                                                                         | 6.2 | 12        |
| 14 | Multilevel optimisation of anaerobic ethyl acetate production in engineered Escherichia coli.<br>Biotechnology for Biofuels, 2020, 13, 65.                                                                                                | 6.2 | 15        |
| 15 | Characterization of heterotrophic growth and sesquiterpene production by <i>Rhodobacter sphaeroides</i> on a defined medium. Journal of Industrial Microbiology and Biotechnology, 2019, 46, 1179-1190.                                   | 1.4 | 21        |
| 16 | Overexpression of delta-12 desaturase in the yeast Schwanniomyces occidentalis enhances the production of linoleic acid. Bioresource Technology, 2019, 289, 121672.                                                                       | 4.8 | 16        |
| 17 | Microbial production of short and medium chain esters: Enzymes, pathways, and applications.<br>Biotechnology Advances, 2019, 37, 107407.                                                                                                  | 6.0 | 75        |
| 18 | Stable transformation of the green algae Acutodesmus obliquus and Neochloris oleoabundans based on E. coli conjugation. Algal Research, 2019, 39, 101453.                                                                                 | 2.4 | 23        |

| #  | Article                                                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Efficient Cas9-based genome editing of Rhodobacter sphaeroides for metabolic engineering. Microbial<br>Cell Factories, 2019, 18, 204.                                                                                                                                           | 1.9 | 20        |
| 20 | Effect of Single and Combined Expression of Lysophosphatidic Acid Acyltransferase,<br>Glycerol-3-Phosphate Acyltransferase, and Diacylglycerol Acyltransferase on Lipid Accumulation and<br>Composition in Neochloris oleoabundans. Frontiers in Plant Science, 2019, 10, 1573. | 1.7 | 31        |
| 21 | Effect of n-Caproate Concentration on Chain Elongation and Competing Processes. ACS Sustainable<br>Chemistry and Engineering, 2018, 6, 7499-7506.                                                                                                                               | 3.2 | 42        |
| 22 | Controlling Ethanol Use in Chain Elongation by CO <sub>2</sub> Loading Rate. Environmental Science<br>& Technology, 2018, 52, 1496-1505.                                                                                                                                        | 4.6 | 127       |
| 23 | Contribution of Eat1 and Other Alcohol Acyltransferases to Ester Production in Saccharomyces cerevisiae. Frontiers in Microbiology, 2018, 9, 3202.                                                                                                                              | 1.5 | 25        |
| 24 | Alcohol Acetyltransferase Eat1 Is Located in Yeast Mitochondria. Applied and Environmental<br>Microbiology, 2018, 84, .                                                                                                                                                         | 1.4 | 20        |
| 25 | Improved DNA/protein delivery in microalgae – A simple and reliable method for the prediction of optimal electroporation settings. Algal Research, 2018, 33, 448-455.                                                                                                           | 2.4 | 39        |
| 26 | Development of an Effective Chain Elongation Process From Acidified Food Waste and Ethanol Into<br>n-Caproate. Frontiers in Bioengineering and Biotechnology, 2018, 6, 50.                                                                                                      | 2.0 | 79        |
| 27 | Expansion of the ωâ€oxidation system AlkBGTL of <i><scp>P</scp>seudomonas putida</i> GPo1 with AlkJ<br>and AlkH results in exclusive monoâ€esterified dicarboxylic acid production in <i>E.Acoli</i> . Microbial<br>Biotechnology, 2017, 10, 594-603.                           | 2.0 | 12        |
| 28 | Monascus ruber as cell factory for lactic acid production at low pH. Metabolic Engineering, 2017, 42, 66-73.                                                                                                                                                                    | 3.6 | 19        |
| 29 | Ethyl acetate production by the elusive alcohol acetyltransferase from yeast. Metabolic Engineering, 2017, 41, 92-101.                                                                                                                                                          | 3.6 | 106       |
| 30 | Biocatalytic, one-pot diterminal oxidation and esterification of n-alkanes for production of α,ω-diol and<br>α,ω-dicarboxylic acid esters. Metabolic Engineering, 2017, 44, 134-142.                                                                                            | 3.6 | 14        |
| 31 | Combination of ester biosynthesis and ω-oxidation for production of mono-ethyl dicarboxylic acids and di-ethyl esters in a whole-cell biocatalytic setup with Escherichia coli. Microbial Cell Factories, 2017, 16, 185.                                                        | 1.9 | 2         |
| 32 | Production of l(+)-lactic acid from acid pretreated sugarcane bagasse using Bacillus coagulans<br>DSM2314 in a simultaneous saccharification and fermentation strategy. Biotechnology for Biofuels,<br>2016, 9, 248.                                                            | 6.2 | 62        |
| 33 | Identifying inhibitory effects of lignocellulosic by-products on growth of lactic acid producing<br>micro-organisms using a rapid small-scale screening method. Bioresource Technology, 2016, 209,<br>297-304.                                                                  | 4.8 | 58        |
| 34 | Precultivation of Bacillus coagulans DSM2314 in the presence of furfural decreases inhibitory effects<br>of lignocellulosic by-products during l(+)-lactic acid fermentation. Applied Microbiology and<br>Biotechnology, 2016, 100, 10307-10319.                                | 1.7 | 15        |
| 35 | Application of AlkBGT and AlkL from Pseudomonas putida GPo1 for Selective Alkyl Ester<br>ï‰-Oxyfunctionalization in Escherichia coli. Applied and Environmental Microbiology, 2016, 82, 3801-3807.                                                                              | 1.4 | 18        |
| 36 | Metabolic Engineering of TCA Cycle for Production of Chemicals. Trends in Biotechnology, 2016, 34, 191-197.                                                                                                                                                                     | 4.9 | 104       |

| #  | Article                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Metabolic engineering of the mixed-acid fermentation pathway of Escherichia coli for anaerobic production of glutamate and itaconate. AMB Express, 2015, 5, 61.                                                               | 1.4 | 20        |
| 38 | NADPH-generating systems in bacteria and archaea. Frontiers in Microbiology, 2015, 6, 742.                                                                                                                                    | 1.5 | 254       |
| 39 | Heterologous expression of Mus musculus immunoresponsive gene 1 (irg1) in Escherichia coli results in itaconate production. Frontiers in Microbiology, 2015, 6, 849.                                                          | 1.5 | 11        |
| 40 | Metabolic engineering of itaconate production in Escherichia coli. Applied Microbiology and Biotechnology, 2015, 99, 221-228.                                                                                                 | 1.7 | 64        |
| 41 | Dilute H2SO4-catalyzed hydrothermal pretreatment to enhance enzymatic digestibility of Jatropha<br>curcas fruit hull for ethanol fermentation. International Journal of Energy and Environmental<br>Engineering, 2012, 3, 15. | 1.3 | 24        |
| 42 | Metabolic engineering of Rhizopus oryzae for the production of platform chemicals. Applied<br>Microbiology and Biotechnology, 2012, 94, 875-886.                                                                              | 1.7 | 90        |
| 43 | Production of cyanophycin in Rhizopus oryzae through the expression of a cyanophycin synthetase encoding gene. Applied Microbiology and Biotechnology, 2012, 93, 1167-1174.                                                   | 1.7 | 13        |
| 44 | Microbial production of bulk chemicals: development of anaerobic processes. Trends in Biotechnology, 2011, 29, 153-158.                                                                                                       | 4.9 | 97        |
| 45 | Enhancing Jatropha oil extraction yield from the kernels assisted by a xylan-degrading bacterium to preserve protein structure. Applied Microbiology and Biotechnology, 2011, 90, 2027-2036.                                  | 1.7 | 10        |
| 46 | From biofuel to bioproduct: is bioethanol a suitable fermentation feedstock for synthesis of bulk chemicals?. Biofuels, Bioproducts and Biorefining, 2011, 5, 486-494.                                                        | 1.9 | 25        |
| 47 | Coconut oil extraction by the traditional Java method: An investigation of its potential application in aqueous Jatropha oil extraction. Biomass and Bioenergy, 2010, 34, 1141-1148.                                          | 2.9 | 7         |
| 48 | Lactic acid production from lime-treated wheat straw by Bacillus coagulans: neutralization of acid by fed-batch addition of alkaline substrate. Applied Microbiology and Biotechnology, 2008, 78, 751-758.                    | 1.7 | 113       |
| 49 | Xylose metabolism in the fungus Rhizopus oryzae: effect of growth and respiration on l(+)-lactic acid production. Journal of Industrial Microbiology and Biotechnology, 2008, 35, 569-578.                                    | 1.4 | 52        |
| 50 | Pilot-scale conversion of lime-treated wheat straw into bioethanol: quality assessment of bioethanol and valorization of side streams by anaerobic digestion and combustion. Biotechnology for Biofuels, 2008, 1, 14.         | 6.2 | 35        |
| 51 | Bio-Refinery as the Bio-Inspired Process to Bulk Chemicals. Macromolecular Bioscience, 2007, 7, 105-117.                                                                                                                      | 2.1 | 226       |
| 52 | Lactic acid production from xylose by the fungus Rhizopus oryzae. Applied Microbiology and<br>Biotechnology, 2006, 72, 861-868.                                                                                               | 1.7 | 77        |
| 53 | Mannitol production by lactic acid bacteria: a review. International Dairy Journal, 2002, 12, 151-161.                                                                                                                        | 1.5 | 309       |
| 54 | Spontaneous Formation of a Mannitol-Producing Variant of Leuconostoc pseudomesenteroides<br>Grown in the Presence of Fructose. Applied and Environmental Microbiology, 2001, 67, 2867-2870.                                   | 1.4 | 50        |

| #  | Article                                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | High-cell-density cultivation of yeasts on disaccharides in oxygen-limited batch cultures. , 2000, 49, 621-628.                                                                                                                                     |     | 12        |
| 56 | Utilisation of biomass for the supply of energy carriers. Applied Microbiology and Biotechnology, 1999, 52, 741-755.                                                                                                                                | 1.7 | 458       |
| 57 | Development of environmentally friendly coatings and paints using medium-chain-length<br>poly(3-hydroxyalkanoates) as the polymer binder. International Journal of Biological<br>Macromolecules, 1999, 25, 123-128.                                 | 3.6 | 63        |
| 58 | Cultivation of the oleaginous yeast Cryptococcus curvatus in a new reactor with improved mixing and mass transfer characteristics (Surer®). Biotechnology Letters, 1996, 10, 277-282.                                                               | 0.5 | 20        |
| 59 | High-cell-density cultivation of yeasts on disaccharides in oxygen-limited batch cultures. , 1996, 49, 621.                                                                                                                                         |     | 11        |
| 60 | Transient responses ofCandida utilis to oxygen limitation: Regulation of the Kluyver effect for maltose. Yeast, 1995, 11, 317-325.                                                                                                                  | 0.8 | 16        |
| 61 | Identification of the Maltose Transport Protein of Saccharomyces cerevisiae. Biochemical and<br>Biophysical Research Communications, 1994, 200, 45-51.                                                                                              | 1.0 | 14        |
| 62 | Kinetics of growth and sugar consumption in yeasts. Antonie Van Leeuwenhoek, 1993, 63, 343-352.                                                                                                                                                     | 0.7 | 173       |
| 63 | Energetics and kinetics of maltose transport in Saccharomyces cerevisiae: a continuous culture study. Applied and Environmental Microbiology, 1993, 59, 3102-3109.                                                                                  | 1.4 | 81        |
| 64 | Purification and characterization of an NAD+-linked formaldehyde dehydrogenase from the<br>facultative RuMP cycle methylotrophArthrobacter P1. Antonie Van Leeuwenhoek, 1992, 62, 201-207.                                                          | 0.7 | 7         |
| 65 | Metabolic regulation in the yeastHansenula polymorpha. Growth of dihydroxyacetone kinase/glycerol<br>kinase-negative mutants on mixtures of methanol and xylose in continuous cultures. Yeast, 1990, 6,<br>107-115.                                 | 0.8 | 6         |
| 66 | Methanol-dependent production of dihydroxyacetone and glycerol by mutants of the methylotrophic<br>yeast Hansenula polymorpha blocked in dihydroxyacetone kinase and glycerol kinase. Applied<br>Microbiology and Biotechnology, 1990, 32, 693-698. | 1.7 | 5         |