Andrew J Sinclair

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6948635/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enrichment of nâ€3 containing ether phospholipids in plasma after 30 days of krill oil compared with fish oil supplementation. Lipids, 2022, 57, 115-124.	0.7	3
2	Dietary Alpha-Linolenic Acid Supports High Retinal DHA Levels. Nutrients, 2022, 14, 301.	1.7	4
3	The effects of fish oil plus vitamin D3 intervention on non-alcoholic fatty liver disease: a randomized controlled trial. European Journal of Nutrition, 2022, 61, 1931-1942.	1.8	13
4	Concentrated fish oil ameliorates non-alcoholic fatty liver disease by regulating fibroblast growth factor 21–adiponectin axis. Nutrition, 2022, 99-100, 111659.	1.1	3
5	Identification of novel lipid biomarkers in xmrk- and Myc-induced models of hepatocellular carcinoma in zebrafish. Cancer & Metabolism, 2022, 10, 7.	2.4	1
6	Meals That Differ in Nutrient Composition and Inflammatory Potential Do Not Differentially Impact Postprandial Circulating Cytokines in Older Adults above a Healthy Weight. Nutrients, 2022, 14, 1470.	1.7	4
7	Blunted nutrient-response pathways in adipose tissue following high fat meals in men with metabolic syndrome: A randomized postprandial transcriptomic study. Clinical Nutrition, 2021, 40, 1355-1366.	2.3	2
8	Multiple micronutrient supplementation improves micronutrient status in primary school children in Hai Phong City, Vietnam: a randomised controlled trial. Scientific Reports, 2021, 11, 3728.	1.6	5
9	Fingertip Whole Blood as an Indicator of Omega-3 Long-Chain Polyunsaturated Fatty Acid Changes during Dose-Response Supplementation in Women: Comparison with Plasma and Erythrocyte Fatty Acids. Nutrients, 2021, 13, 1419.	1.7	3
10	The Sources, Synthesis and Biological Actions of Omega-3 and Omega-6 Fatty Acids in Red Meat: An Overview. Foods, 2021, 10, 1358.	1.9	44
11	Effects of dietary eicosapentaenoic acid and docosahexaenoic acid supplementation on metabolic syndrome: A systematic review and meta-analysis of data from 33 randomized controlled trials. Clinical Nutrition, 2021, 40, 4538-4550.	2.3	21
12	n – 3 Docosapentaenoic acid: the iceberg n – 3 fatty acid. Current Opinion in Clinical Nutrition a Metabolic Care, 2021, 24, 134-138.	and 1.3	16
13	Effect of whole foods and dietary patterns on markers of subclinical inflammation in weight-stable overweight and obese adults: a systematic review. Nutrition Reviews, 2020, 78, 19-38.	2.6	18
14	Different metabolism of EPA, DPA and DHA in humans: A double-blind cross-over study. Prostaglandins Leukotrienes and Essential Fatty Acids, 2020, 158, 102033.	1.0	24
15	Krill Oil Has Different Effects on the Plasma Lipidome Compared with Fish Oil Following 30 Days of Supplementation in Healthy Women: A Randomized Controlled and Crossover Study. Nutrients, 2020, 12, 2804.	1.7	6
16	Pure omega 3 polyunsaturated fatty acids (EPA, DPA or DHA) are associated with increased plasma levels of 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid (CMPF) in a short-term study in women. Food and Function, 2020, 11, 2058-2066.	2.1	14
17	Microencapsulated Tuna Oil Results in Higher Absorption of DHA in Toddlers. Nutrients, 2020, 12, 248.	1.7	11
18	High Variability in Erythrocyte, Plasma and Whole Blood EPA and DHA Levels in Response to Supplementation. Nutrients, 2020, 12, 1017.	1.7	13

#	Article	IF	CITATIONS
19	Anaemia and Its Relation to Demographic, Socio-economic and Anthropometric Factors in Rural Primary School Children in Hai Phong City, Vietnam. Nutrients, 2019, 11, 1478.	1.7	11
20	Differential plasma postprandial lipidomic responses to krill oil and fish oil supplementations in women: A randomized crossover study. Nutrition, 2019, 65, 191-201.	1.1	14
21	Plasmalogens and Alzheimer's disease: a review. Lipids in Health and Disease, 2019, 18, 100.	1.2	99
22	Effects of dietary fat on gut microbiota and faecal metabolites, and their relationship with cardiometabolic risk factors: a 6-month randomised controlled-feeding trial. Gut, 2019, 68, 1417-1429.	6.1	422
23	How does high DHA fish oil affect health? A systematic review of evidence. Critical Reviews in Food Science and Nutrition, 2019, 59, 1684-1727.	5.4	165
24	Advances in n-3 polyunsaturated fatty acid nutrition. Asia Pacific Journal of Clinical Nutrition, 2019, 28, 1-5.	0.3	29
25	Docosahexaenoic acid and the brain- what is its role?. Asia Pacific Journal of Clinical Nutrition, 2019, 28, 675-688.	0.3	22
26	No effect of saturated fatty acid chain length on meal-induced thermogenesis in overweight men. Nutrition Research, 2018, 51, 102-110.	1.3	6
27	Differential effects of EPA, DPA and DHA on cardio-metabolic risk factors in high-fat diet fed mice. Prostaglandins Leukotrienes and Essential Fatty Acids, 2018, 136, 47-55.	1.0	59
28	Arachidonic acid supplementation modulates blood and skeletal muscle lipid profile with no effect on basal inflammation in resistance exercise trained men. Prostaglandins Leukotrienes and Essential Fatty Acids, 2018, 128, 74-86.	1.0	29
29	Anthropometric Status among 6–9-Year-Old School Children in Rural Areas in Hai Phong City, Vietnam. Nutrients, 2018, 10, 1431.	1.7	10
30	Effect of Low Dose Docosahexaenoic Acid-Rich Fish Oil on Plasma Lipids and Lipoproteins in Pre-Menopausal Women: A Dose–Response Randomized Placebo-Controlled Trial. Nutrients, 2018, 10, 1460.	1.7	9
31	Uncommon Fatty Acids and Cardiometabolic Health. Nutrients, 2018, 10, 1559.	1.7	42
32	Introduction: More Than 50 Years of Research on Polyunsaturated Fatty Acid Metabolism. , 2018, , 1-14.		0
33	Arachidonic acid supplementation transiently augments the acute inflammatory response to resistance exercise in trained men. Journal of Applied Physiology, 2018, 125, 271-286.	1.2	14
34	Effect of dietary arachidonic acid supplementation on acute muscle adaptive responses to resistance exercise in trained men: a randomized controlled trial. Journal of Applied Physiology, 2018, 124, 1080-1091.	1.2	11
35	3â€carboxyâ€4â€methylâ€5â€propylâ€2â€furanpropanoic acid (CMPF): A metabolite identified after consumptio fish oil and fish. Nutrition Bulletin, 2018, 43, 153-157.	n of 0.8	8
36	Protective Effects of a Lipid Extract from Hard-Shelled Mussel (Mytilus coruscus) on Intestinal Integrity after Lipopolysaccharide Challenge in Mice. Nutrients, 2018, 10, 860.	1.7	16

#	Article	IF	CITATIONS
37	Postprandial long-chain n-3 polyunsaturated fatty acid response to krill oil and fish oil consumption in healthy women: a randomised controlled, single-dose, crossover study. Asia Pacific Journal of Clinical Nutrition, 2018, 27, 148-157.	0.3	11
38	Argon gas plasma to decontaminate and extend shelf life of milk. Plasma Processes and Polymers, 2017, 14, 1600242.	1.6	19
39	Furan fatty acids – Beneficial or harmful to health?. Progress in Lipid Research, 2017, 68, 119-137.	5.3	63
40	Nitrate and Hydrogen Peroxide Generated in Water by Electrical Discharges Stimulate Wheat Seedling Growth. Plasma Chemistry and Plasma Processing, 2017, 37, 1393-1404.	1.1	21
41	Chronic Psychological Stress Was Not Ameliorated by Omega-3 Eicosapentaenoic Acid (EPA). Frontiers in Pharmacology, 2017, 8, 551.	1.6	8
42	Response to a Comment by Albert et al. (Nutrients 2017, 9, 137) Entitled "Concerns with the Study on Australian and New Zealand Fish Oil Products―by Nichols et al. (Nutrients 2016, 8, 703). Nutrients, 2017, 9, 583.	1.7	1
43	Australian and New Zealand Fish Oil Products in 2016 Meet Label Omega-3 Claims and Are Not Oxidized. Nutrients, 2016, 8, 703.	1.7	29
44	Short update on docosapentaenoic acid. Current Opinion in Clinical Nutrition and Metabolic Care, 2016, 19, 88-91.	1.3	47
45	Anti-inflammatory activity and mechanisms of a lipid extract from hard-shelled mussel (Mytilus) Tj ETQq1 1 0.7843 389-399.	814 rgBT / 1.6	Overlock 10 14
46	Divergent shifts in lipid mediator profile following supplementation with nâ€3 docosapentaenoic acid and eicosapentaenoic acid. FASEB Journal, 2016, 30, 3714-3725.	0.2	74
47	Zebrafish Embryonic Lipidomic Analysis Reveals that the Yolk Cell Is Metabolically Active in Processing Lipid. Cell Reports, 2016, 14, 1317-1329.	2.9	178
48	Metabolic fate (absorption, <i>β</i> -oxidation and deposition) of long-chain <i>n</i> -3 fatty acids is affected by sex and by the oil source (krill oil or fish oil) in the rat. British Journal of Nutrition, 2015, 114, 684-692.	1.2	43
49	Dietary sources, current intakes, and nutritional role of omegaâ€3 docosapentaenoic acid. Lipid Technology, 2015, 27, 79-82.	0.3	96
50	Postprandial Responses to Lipid and Carbohydrate Ingestion in Repeated Subcutaneous Adipose Tissue Biopsies in Healthy Adults. Nutrients, 2015, 7, 5347-5361.	1.7	9
51	What Is the Most Effective Way of Increasing the Bioavailability of Dietary Long Chain Omega-3 Fatty Acids—Daily vs. Weekly Administration of Fish Oil?. Nutrients, 2015, 7, 5628-5645.	1.7	12
52	Fish oil and multivitamin supplementation reduces oxidative stress but not inflammation in healthy older adults: A randomised controlled trial. Journal of Functional Foods, 2015, 19, 949-957.	1.6	13
53	Postprandial Plasma Phospholipids in Men Are Influenced by the Source of Dietary Fat. Journal of Nutrition, 2015, 145, 2012-2018.	1.3	54
54	Recent Advances in Omega-3: Health Benefits, Sources, Products and Bioavailability. Nutrients, 2014, 6, 3727-3733.	1.7	29

#	Article	IF	CITATIONS
55	Randomized Controlled Trial Examining the Effects of Fish Oil and Multivitamin Supplementation on the Incorporation of n-3 and n-6 Fatty Acids into Red Blood Cells. Nutrients, 2014, 6, 1956-1970.	1.7	16
56	Muscle p70S6K phosphorylation in response to soy and dairy rich meals in middle aged men with metabolic syndrome: a randomised crossover trial. Nutrition and Metabolism, 2014, 11, 46.	1.3	15
57	Comparison of the bioavailability of docosapentaenoic acid (DPA, 22:5n-3) and eicosapentaenoic acid (EPA, 20:5n-3) in the rat. Prostaglandins Leukotrienes and Essential Fatty Acids, 2014, 90, 23-26.	1.0	17
58	Omega-3 long chain fatty acid "bioavailability― A review of evidence and methodological considerations. Progress in Lipid Research, 2014, 56, 92-108.	5.3	137
59	Pancreatic lipase selectively hydrolyses DPA over EPA and DHA due to location of double bonds in the fatty acid rather than regioselectivity. Food Chemistry, 2014, 160, 61-66.	4.2	55
60	Rapid Development of Non-Alcoholic Steatohepatitis in Psammomys obesus (Israeli Sand Rat). PLoS ONE, 2014, 9, e92656.	1.1	19
61	Dietary repletion with ω3 fatty acid or with COX inhibition reverses cognitive effects in F3 ω3 fatty-acid-deficient mice. Comparative Medicine, 2014, 64, 106-9.	0.4	6
62	A short-term n-3 DPA supplementation study in humans. European Journal of Nutrition, 2013, 52, 895-904.	1.8	65
63	Postprandial metabolism of docosapentaenoic acid (DPA, 22:5nâ^3) and eicosapentaenoic acid (EPA,) Tj ETQq1	1 0.78431 1.0	4 ṟǥƁT /Over
64	Orally administered [14C]DPA and [14C]DHA are metabolised differently to [14C]EPA in rats. British Journal of Nutrition, 2013, 109, 441-448.	1.2	25
65	Are trans fats a problem in Australia?. Medical Journal of Australia, 2012, 196, 666-667.	0.8	5
66	Docosapentaenoic acid (22:5n-3) down-regulates the expression of genes involved in fat synthesis in liver cells. Prostaglandins Leukotrienes and Essential Fatty Acids, 2011, 85, 155-161.	1.0	48
67	Docosapentaenoic acid (22:5n-3): A review of its biological effects. Progress in Lipid Research, 2011, 50, 28-34.	5.3	271
68	Short-term docosapentaenoic acid (22Â:Â5 <i>n</i> -3) supplementation increases tissue docosapentaenoic acid, DHA and EPA concentrations in rats. British Journal of Nutrition, 2010, 103, 32-37.	1.2	82
69	Effects of conjugated linolenic acid and conjugated linoleic acid on lipid metabolism in mice. European Journal of Lipid Science and Technology, 2009, 111, 537-545.	1.0	35
70	Incorporation and metabolism of punicic acid in healthy young humans. Molecular Nutrition and Food Research, 2009, 53, 1336-1342.	1.5	44
71	αâ€Eleostearic acid is more effectively metabolized into conjugated linoleic acid than punicic acid in mice. Journal of the Science of Food and Agriculture, 2009, 89, 1006-1011.	1.7	30
72	Inhibition of platelet aggregation by omega-3 polyunsaturated fatty acids is gender specific—Redefining platelet response to fish oils. Prostaglandins Leukotrienes and Essential Fatty Acids, 2009, 81, 35-40.	1.0	62

#	Article	IF	CITATIONS
73	Omega 3 fatty acids and the brain: review of studies in depression. Asia Pacific Journal of Clinical Nutrition, 2007, 16 Suppl 1, 391-7.	0.3	50
74	Food group categories used in dietary analysis can misrepresent the amount and type of fat present in foods. Nutrition and Dietetics, 2006, 63, 69-78.	0.9	6
75	Influencing health through intestinal microbiota modulation and probiotics. Asia Pacific Journal of Clinical Nutrition, 2006, 15, 556-7.	0.3	0
76	Diacylglycerols from butterfat: Production by glycerolysis and short-path distillation and analysis of physical properties. JAOCS, Journal of the American Oil Chemists' Society, 2004, 81, 979-987.	0.8	53
77	Dietary intakes and food sources of omega-6 and omega-3 polyunsaturated fatty acids. Lipids, 2003, 38, 391-398.	0.7	446
78	Macronutrient innovations: The role of fats and sterols in human health. Asia Pacific Journal of Clinical Nutrition, 2002, 11, S155-S162.	0.3	20
79	Bread enriched with microencapsulated tuna oil increases plasma docosahexaenoic acid and total omega-3 fatty acids in humans. Asia Pacific Journal of Clinical Nutrition, 2002, 11, 285-291.	0.3	65
80	Relationship between platelet phospholipid FA and mean platelet volume in healthy men. Lipids, 2002, 37, 901-906.	0.7	14
81	What is the role of \hat{I}_{\pm} -linolenic acid for mammals?. Lipids, 2002, 37, 1113-1123.	0.7	222
82	The alpha-linolenic Acid Content of Green Vegetables Commonly Available in Australia. International Journal for Vitamin and Nutrition Research, 2001, 71, 223-228.	0.6	33
83	1-14C-Linoleic acid distribution in various tissue lipids of guinea pigs following an oral dose. Lipids, 2001, 36, 255-260.	0.7	25
84	Perinatal omega-3 fatty acid deficiency affects blood pressure later in life. Nature Medicine, 2001, 7, 258-259.	15.2	135
85	Polyunsaturated fatty acids reduce nonâ€receptorâ€mediated transcellular permeation of protein across a model of intestinal epithelium in vitro. Journal of Gastroenterology and Hepatology (Australia), 2000, 15, 626-631.	1.4	28
86	Increased α-linolenic acid intake increases tissue α-linolenic acid content and apparent oxidation with little effect on tissue docosahexaenoic acid in the guinea pig. Lipids, 2000, 35, 395-400.	0.7	81
87	Novel Pathway of Metabolism of α-Linolenic Acid in the Guinea Pig. Pediatric Research, 2000, 47, 414-417.	1.1	38
88	The metabolism of native and randomized butterfat chylomicrons in the rat is similar. Lipids, 1999, 34, 579-582.	0.7	13
89	Santalbic acid from quandong kernels and oil fed to rats affects kidney and liver P450. Asia Pacific Journal of Clinical Nutrition, 1999, 8, 211-215.	0.3	11
90	Lipoprotein(a), essential fatty acid status and lipoprotein lipids in female Australian vegetarians. Clinical Science, 1999, 97, 175-181.	1.8	26

#	Article	IF	CITATIONS
91	Effect of dietary α-linolenic acid on thrombotic risk factors in vegetarian men. American Journal of Clinical Nutrition, 1999, 69, 872-882.	2.2	181
92	Electroretinograms of albino and pigmented guineaâ€pigs (<i>Cavia porcellus</i>). Australian and New Zealand Journal of Ophthalmology, 1998, 26, S98-100.	0.4	15
93	Contribution of meat fat to dietary arachidonic acid. Lipids, 1998, 33, 437-440.	0.7	90
94	The effect of short-term diets rich in fish, red meat, or white meat on thromboxane and prostacyclin synthesis in humans. Lipids, 1997, 32, 635-644.	0.7	44
95	Effect of Dietary n-3 Deficiency on the Electroretinogram in the Guinea Pig. Annals of Nutrition and Metabolism, 1996, 40, 91-98.	1.0	64
96	Short-term Diets Rich in Arachidonic Acid Influence Plasma Phospholipid Polyunsaturated Fatty Acid Levels and Prostacyclin and Thromboxane Production in Humans. Journal of Nutrition, 1996, 126, 1110S-1114S.	1.3	30
97	Dietary fat and neural development. Lipids, 1996, 31, 51-51.	0.7	14
98	The effect of docosahexaenoic acid on the electroretinogram of the guinea pig. Lipids, 1996, 31, 65-70.	0.7	96
99	Platelet and aorta arachidonic and eicosapentaenoic acid levels andin vitro eicosanoid production in rats fed high-fat diets. Lipids, 1996, 31, 729-735.	0.7	11
100	Arachidonic acid to eicosapentaenoic acid ratio in blood correlates positively with clinical symptoms of depression. Lipids, 1996, 31, S157-S161.	0.7	383
101	Electrodiagnostic methods in vision. Australasian journal of optometry, The, 1996, 79, 50-61.	0.6	6
102	Electrodiagnostic methods in vision. Australasian journal of optometry, The, 1996, 79, 97-105.	0.6	6
103	Electrodiagnostic methods in vision. Australasian journal of optometry, The, 1996, 79, 131-143.	0.6	2
104	Dietary manipulation of long-chain polyunsaturated fatty acids in the retina and brain of guinea pigs. Lipids, 1995, 30, 471-473.	0.7	34
105	The effect of linoleic, arachidonic and eicosapentaenoic acid supplementation on prostacyclin production in rats. Lipids, 1994, 29, 157-162.	0.7	42
106	Differential utilization of eicosapentaenoic acid and docosahexaenoic acid in human plasma. Lipids, 1993, 28, 525-531.	0.7	57
107	Effects of omega 3 polyunsaturated fatty acids on human health. Medical Journal of Australia, 1990, 153, 174-174.	0.8	1
108	Butter-enriched diets reduce arterial prostacyclin production in rats. Lipids, 1988, 23, 234-241.	0.7	28

7

#	Article	IF	CITATIONS
109	Effects on plasma lipids and fatty acid composition of very low fat diets enriched with fish or kangaroo meat. Lipids, 1987, 22, 523-529.	0.7	113
110	Animal foods in traditional Australian aboriginal diets: Polyunsaturated and low in fat. Lipids, 1986, 21, 684-690.	0.7	90