
Eva-Maria Frickel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6948337/publications.pdf Version: 2024-02-01

EVA-MADIA EDICKEL

#	Article	IF	CITATIONS
1	<i>Toxoplasma</i> -proximal and distal control by GBPs in human macrophages. Pathogens and Disease, 2022, 79, .	2.0	11
2	<scp>HRMAn</scp> 2.0: Nextâ€generation artificial intelligence–driven analysis for broad host–pathogen interactions. Cellular Microbiology, 2021, 23, e13349.	2.1	14
3	Vaccinia virus hijacks ESCRT-mediated multivesicular body formation for virus egress. Life Science Alliance, 2021, 4, e202000910.	2.8	15
4	Lessons from <i>Toxoplasma</i> : Host responses that mediate parasite control and the microbial effectors that subvert them. Journal of Experimental Medicine, 2021, 218, .	8.5	44
5	Human GBP1 Differentially Targets Salmonella and Toxoplasma to License Recognition of Microbial Ligands and Caspase-Mediated Death. Cell Reports, 2020, 32, 108008.	6.4	58
6	Mimicry Embedding Facilitates Advanced Neural Network Training for Image-Based Pathogen Detection. MSphere, 2020, 5, .	2.9	5
7	The zebrafish as a novel model for the <i>in vivo</i> study of <i>Toxoplasma gondii</i> replication and interaction with macrophages. DMM Disease Models and Mechanisms, 2020, 13, .	2.4	16
8	Image-Based Quantitation of Host Cell–Toxoplasma gondii Interplay Using HRMAn: A Host Response to Microbe Analysis Pipeline. Methods in Molecular Biology, 2020, 2071, 411-433.	0.9	4
9	One gene to rule them all in a chronic brain infection. Nature, 2020, 579, 34-35.	27.8	0
10	CD82 controls CpGâ€dependent TLR9 signaling. FASEB Journal, 2019, 33, 12500-12514.	0.5	16
11	Transcriptional profiling unveils type I and II interferon networks in blood and tissues across diseases. Nature Communications, 2019, 10, 2887.	12.8	65
12	Human <scp>GBP</scp> 1 is a microbeâ€specific gatekeeper of macrophage apoptosis and pyroptosis. EMBO Journal, 2019, 38, e100926.	7.8	170
13	Human immunity to Toxoplasma gondii. PLoS Pathogens, 2019, 15, e1008097.	4.7	47
14	Clonal and atypical Toxoplasma strain differences in virulence vary with mouse sub-species. International Journal for Parasitology, 2019, 49, 63-70.	3.1	27
15	C57BL/6 and 129 inbred mouse strains differ in Gbp2 and Gbp2b expression in response to inflammatory stimuli in vivo. Wellcome Open Research, 2019, 4, 124.	1.8	6
16	Defining host–pathogen interactions employing an artificial intelligence workflow. ELife, 2019, 8, .	6.0	66
17	The Interplay of Host Autophagy and Eukaryotic Pathogens. Frontiers in Cell and Developmental Biology, 2018, 6, 118.	3.7	40
18	T Cell Receptor–Major Histocompatibility Complex Interaction Strength Defines Trafficking and CD103+ Memory Status of CD8 T Cells in the Brain. Frontiers in Immunology, 2018, 9, 1290.	4.8	25

Eva-Maria Frickel

#	Article	IF	CITATIONS
19	Murine Gbp1 and Gbp2 are ubiquitinated independent of Toxoplasma gondii infection. BMC Research Notes, 2018, 11, 166.	1.4	5
20	Cysteine-Reactive Free ISG15 Generates IL-1β–Producing CD8α+ Dendritic Cells at the Site of Infection. Journal of Immunology, 2018, 201, 604-614.	0.8	32
21	The Toxoplasma Parasitophorous Vacuole: An Evolving Host–Parasite Frontier. Trends in Parasitology, 2017, 33, 473-488.	3.3	96
22	TRIM21 is critical for survival of Toxoplasma gondii infection and localises to GBP-positive parasite vacuoles. Scientific Reports, 2017, 7, 5209.	3.3	52
23	Exposing Toxoplasma gondii hiding inside the vacuole: a role for GBPs, autophagy and host cell death. Current Opinion in Microbiology, 2017, 40, 72-80.	5.1	91
24	Macrophage–Microbe Interactions: Lessons from the Zebrafish Model. Frontiers in Immunology, 2017, 8, 1703.	4.8	40
25	Chlamydia trachomatis Is Resistant to Inclusion Ubiquitination and Associated Host Defense in Gamma Interferon-Primed Human Epithelial Cells. MBio, 2016, 7, .	4.1	41
26	Human GBP1 does not localize to pathogen vacuoles but restricts <i>Toxoplasma gondii</i> . Cellular Microbiology, 2016, 18, 1056-1064.	2.1	95
27	Transnuclear CD 8 T cells specific for the immunodominant epitope Gra6 lower acuteâ€phase Toxoplasma gondii burden. Immunology, 2016, 149, 270-279.	4.4	9
28	Peripheral self-reactivity regulates antigen-specific CD8 T-cell responses and cell division under physiological conditions. Open Biology, 2016, 6, 160293.	3.6	7
29	K63-Linked Ubiquitination Targets Toxoplasma gondii for Endo-lysosomal Destruction in IFNÎ ³ -Stimulated Human Cells. PLoS Pathogens, 2016, 12, e1006027.	4.7	92
30	Toxoplasma gondii Superinfection and Virulence during Secondary Infection Correlate with the Exact <i>ROP5/ROP18</i> Allelic Combination. MBio, 2015, 6, e02280.	4.1	78
31	Ubiquitin systems mark pathogen-containing vacuoles as targets for host defense by guanylate binding proteins. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5628-37.	7.1	147
32	RabGDlα is a negative regulator of interferon-γ–inducible GTPase-dependent cell-autonomous immunity to <i>Toxoplasma gondii</i> . Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E4581-90.	7.1	30
33	IRG and GBP Host Resistance Factors Target Aberrant, "Non-self―Vacuoles Characterized by the Missing of "Self―IRGM Proteins. PLoS Pathogens, 2013, 9, e1003414.	4.7	163
34	Cell Death of Gamma Interferon-Stimulated Human Fibroblasts upon Toxoplasma gondii Infection Induces Early Parasite Egress and Limits Parasite Replication. Infection and Immunity, 2013, 81, 4341-4349.	2.2	74
35	Use and abuse of dendritic cells by <i>Toxoplasma gondii</i> . Virulence, 2012, 3, 678-689.	4.4	40
36	CD8α+ Dendritic Cells Are the Critical Source of Interleukin-12 that Controls Acute Infection by Toxoplasma gondii Tachyzoites. Immunity, 2011, 35, 249-259.	14.3	334

Eva-Maria Frickel

#	Article	IF	CITATIONS
37	Determinants of GBP Recruitment to Toxoplasma gondii Vacuoles and the Parasitic Factors That Control It. PLoS ONE, 2011, 6, e24434.	2.5	123
38	Transnuclear Mice with Pre-defined T Cell Receptor Specificities Against Toxoplasma gondii Obtained Via SCNT. Journal of Visualized Experiments, 2010, , .	0.3	14
39	Transnuclear Mice with Predefined T Cell Receptor Specificities Against <i>Toxoplasma gondii</i> Obtained via SCNT. Science, 2010, 328, 243-248.	12.6	60
40	Differential Regulation of Effector- and Central-Memory Responses to Toxoplasma gondii Infection by IL-12 Revealed by Tracking of Tgd057-Specific CD8+ T Cells. PLoS Pathogens, 2010, 6, e1000815.	4.7	92
41	Parasite Stage–Specific Recognition of Endogenous <i>Toxoplasma gondii</i> –Derived CD8 ⁺ T Cell Epitopes. Journal of Infectious Diseases, 2008, 198, 1625-1633.	4.0	111
42	Apicomplexan UCHL3 retains dual specificity for ubiquitin and Nedd8 throughout evolution. Cellular Microbiology, 2007, 9, 1601-1610.	2.1	77
43	Immunoglobulin G signaling activates lysosome/phagosome docking. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 18226-18231.	7.1	26
44	Domain Architecture of Protein-disulfide Isomerase Facilitates Its Dual Role as an Oxidase and an Isomerase in Ero1p-mediated Disulfide Formation. Journal of Biological Chemistry, 2006, 281, 876-884.	3.4	73
45	ERp57 Is a Multifunctional Thiol-Disulfide Oxidoreductase. Journal of Biological Chemistry, 2004, 279, 18277-18287.	3.4	169
46	Calnexin, Calreticulin, and ERp57: Teammates in Glycoprotein Folding. Cell Biochemistry and Biophysics, 2003, 39, 223-248.	1.8	151
47	TROSY-NMR reveals interaction between ERp57 and the tip of the calreticulin P-domain. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 1954-1959.	7.1	269
48	Yeast Glyoxalase I Is a Monomeric Enzyme with Two Active Sites. Journal of Biological Chemistry, 2001, 276, 1845-1849.	3.4	49