Theresa E Stotesbury

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/694820/publications.pdf

Version: 2024-02-01

1307594 1372567 24 146 7 citations h-index papers

g-index 26 26 26 90 docs citations times ranked citing authors all docs

10

#	Article	IF	CITATIONS
1	Using total <scp>RNA</scp> quality metrics for time since deposition estimates in degrading bloodstains. Journal of Forensic Sciences, 2022, 67, 1776-1785.	1.6	2
2	An Exploratory Time Since Deposition Analysis of Whole Blood Using Metrics of DNA Degradation and Visible Absorbance Spectroscopy. Pure and Applied Geophysics, 2021, 178, 735-743.	1.9	14
3	Untargeted SPME–GC–MS Characterization of VOCs Released from Spray Paint. Journal of Chromatographic Science, 2021, 59, 103-111.	1.4	8
4	Quantifying visible absorbance changes and DNA degradation in aging bloodstains under extreme temperatures. Forensic Science International, 2021, 318, 110627.	2.2	15
5	Drip stains formed on ice and snow: an observational study. Journal of the Canadian Society of Forensic Science, 2021, 54, 61-76.	0.9	1
6	Whole bovine blood use in forensic research: Sample preparation and storage considerations. Science and Justice - Journal of the Forensic Science Society, 2021, 61, 214-220.	2.1	8
7	subMALDI: an open framework R package for processing irregularly-spaced mass spectrometry data. Journal of Open Source Software, 2021, 6, 2694.	4.6	O
8	Preliminary analysis of latent fingerprints recovered from underneath bloodstains using matrix-assisted laser desorption/ionization fourier-transform ion cyclotron resonance mass spectrometry imaging (MALDI FT-ICR MSI). Forensic Chemistry, 2020, 20, 100274.	2.8	6
9	The use of high-resolution mass spectrometry (HRMS) for the analysis of DNA and other macromolecules: A how-to guide for forensic chemistry. Forensic Chemistry, 2019, 14, 100169.	2.8	2
10	Characterizing drip patterns in bloodstain pattern analysis: An investigation of the influence of droplet impact velocity and number of droplets on static pattern features. Forensic Science International, 2019, 301, 55-66.	2.2	8
11	Validation of Sherlock, a linear trajectory analysis program for use in bloodstain pattern analysis. Journal of the Canadian Society of Forensic Science, 2019, 52, 78-94.	0.9	4
12	Luminol reagent control materials in bloodstain pattern analysis: A silicon sol-gel polymer alternative. Forensic Chemistry, 2019, 12, 91-98.	2.8	5
13	Quantifying chemiluminescence of the forensic luminol test for ovine blood in a dilution and time series. Forensic Science International, 2018, 290, 36-41.	2.2	3
14	Waterborne epoxy-thiol decorated silica sol-gel coatings: impact of crosslinking on corrosion prevention. Journal of Sol-Gel Science and Technology, 2018, 87, 504-513.	2.4	13
15	The use of a forensic blood substitute for impact pattern area of origin estimation via three trajectory analysis programs. Journal of the Canadian Society of Forensic Science, 2018, 51, 58-66.	0.9	4
16	The application of silicon sol–gel technology to forensic blood substitute development: Investigation of the spreading dynamics onto a paper surface. Forensic Science International, 2017, 275, 308-313.	2.2	9
17	Passive Drip Stain Formation Dynamics of Blood onto Hard Surfaces and Comparison with Simple Fluids for Blood Substitute Development and Assessment [,] . Journal of Forensic Sciences, 2017, 62, 74-82.	1.6	11
18	High-speed video analysis of crown formation dynamics of controlled weapon-head impacts on to three surface types. Journal of the Canadian Society of Forensic Science, 2017, 50, 64-73.	0.9	0

#	Article	IF	CITATIONS
19	The application of silicon sol–gel technology to forensic blood substitute development: Mimicking aspects of whole human blood rheology. Forensic Science International, 2017, 270, 12-19.	2.2	7
20	Novel Technological Approaches for Pedagogy in Forensic Science: A Case Study in Bloodstain Pattern Analysis. Forensic Science Policy and Management, 2016, 7, 87-97.	0.5	3
21	Design Considerations for the Implementation of Artificial Fluids as Blood Substitutes for Educational and Training Use in the Forensic Sciences. Forensic Science Policy and Management, 2016, 7, 81-86.	0.5	7
22	Three physical factors that affect the crown growth of the impact mechanism and its implications for bloodstain pattern analysis. Forensic Science International, 2016, 266, 254-262.	2.2	4
23	An Impact Velocity Device Design for Blood Spatter Pattern Generation with Considerations for Highâ€Speed Video Analysis,. Journal of Forensic Sciences, 2016, 61, 501-508.	1.6	5
24	Novel silica sol–gel passive sampler for mercury monitoring in aqueous systems. Chemosphere, 2013, 90, 323-328.	8.2	6