David Herrmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6948059/publications.pdf

Version: 2024-02-01

DAVID HEDDMANN

#	Article	IF	CITATIONS
1	Targeting stromal remodeling and cancer stem cell plasticity overcomes chemoresistance in triple negative breast cancer. Nature Communications, 2018, 9, 2897.	12.8	293
2	Fluids and their mechanics in tumour transit: shaping metastasis. Nature Reviews Cancer, 2020, 20, 107-124.	28.4	232
3	CAF Subpopulations: A New Reservoir of Stromal Targets in Pancreatic Cancer. Trends in Cancer, 2019, 5, 724-741.	7.4	214
4	Transient tissue priming via ROCK inhibition uncouples pancreatic cancer progression, sensitivity to chemotherapy, and metastasis. Science Translational Medicine, 2017, 9, .	12.4	208
5	CAF hierarchy driven by pancreatic cancer cell p53-status creates a pro-metastatic and chemoresistant environment via perlecan. Nature Communications, 2019, 10, 3637.	12.8	170
6	Three-dimensional cancer models mimic cell-matrix interactions in the tumour microenvironment. Carcinogenesis, 2014, 35, 1671-1679.	2.8	123
7	A RhoA-FRET Biosensor Mouse for Intravital Imaging in Normal Tissue Homeostasis and Disease Contexts. Cell Reports, 2017, 21, 274-288.	6.4	83
8	SerpinB2 regulates stromal remodelling and local invasion in pancreatic cancer. Oncogene, 2017, 36, 4288-4298.	5.9	77
9	Recent advances in understanding the complexities of metastasis. F1000Research, 2018, 7, 1169.	1.6	75
10	Oral administration of bovine milk-derived extracellular vesicles induces senescence in the primary tumor but accelerates cancer metastasis. Nature Communications, 2021, 12, 3950.	12.8	70
11	Combating pancreatic cancer with PI3K pathway inhibitors in the era of personalised medicine. Gut, 2019, 68, 742-758.	12.1	68
12	Intravital Imaging to Monitor Therapeutic Response in Moving Hypoxic Regions Resistant to PI3K Pathway Targeting in Pancreatic Cancer. Cell Reports, 2018, 23, 3312-3326.	6.4	61
13	MCL-1 inhibition provides a new way to suppress breast cancer metastasis and increase sensitivity to dasatinib. Breast Cancer Research, 2016, 18, 125.	5.0	60
14	ELF5 Drives Lung Metastasis in Luminal Breast Cancer through Recruitment of Gr1+ CD11b+ Myeloid-Derived Suppressor Cells. PLoS Biology, 2015, 13, e1002330.	5.6	59
15	The tyrosine phosphatase PTPN14 (Pez) inhibits metastasis by altering protein trafficking. Science Signaling, 2015, 8, ra18.	3.6	57
16	Intravital FRAP Imaging using an E-cadherin-GFP Mouse Reveals Disease- and Drug-Dependent Dynamic Regulation of Cell-Cell Junctions in Live Tissue. Cell Reports, 2016, 14, 152-167.	6.4	54
17	Recent advances in understanding the complexities of metastasis. F1000Research, 2018, 7, 1169.	1.6	45
18	ROBO2 is a stroma suppressor gene in the pancreas and acts via TGF-Î ² signalling. Nature Communications, 2018, 9, 5083.	12.8	41

DAVID HERRMANN

#	Article	IF	CITATIONS
19	The dynamics of Rho GTPase signaling and implications for targeting cancer and the tumor microenvironment. Small GTPases, 2015, 6, 123-133.	1.6	37
20	Removing physiological motion from intravital and clinical functional imaging data. ELife, 2018, 7, .	6.0	34
21	Molecular mobility and activity in an intravital imaging setting – implications for cancer progression and targeting. Journal of Cell Science, 2018, 131, .	2.0	32
22	Inhibition of PAK1 suppresses pancreatic cancer by stimulation of anti-tumour immunity through down-regulation of PD-L1. Cancer Letters, 2020, 472, 8-18.	7.2	31
23	Genomic and Molecular Analyses Identify Molecular Subtypes of Pancreatic Cancer Recurrence. Gastroenterology, 2022, 162, 320-324.e4.	1.3	26
24	â€~MCC' protein interacts with E-cadherin and β-catenin strengthening cell–cell adhesion of HCT116 colon cancer cells. Oncogene, 2018, 37, 663-672.	5.9	25
25	Intravital imaging technology guides FAK-mediated priming in pancreatic cancer precision medicine according to Merlin status. Science Advances, 2021, 7, eabh0363.	10.3	23
26	Three-dimensional organotypic matrices from alternative collagen sources as pre-clinical models for cell biology. Scientific Reports, 2017, 7, 16887.	3.3	22
27	Dynamic Stromal Alterations Influence Tumor-Stroma Crosstalk to Promote Pancreatic Cancer and Treatment Resistance. Cancers, 2021, 13, 3481.	3.7	13
28	Optimizing metastatic-cascade-dependent Rac1 targeting in breast cancer: Guidance using optical window intravital FRET imaging. Cell Reports, 2021, 36, 109689.	6.4	12
29	Intravital imaging reveals new ancillary mechanisms co-opted by cancer cells to drive tumor progression. F1000Research, 2016, 5, 892.	1.6	11
30	Expression and regulation of <i>ANTXR1</i> in the chick embryo. Developmental Dynamics, 2010, 239, 680-687.	1.8	9
31	Quantifying and visualising the nuances of cellular dynamics inÂvivo using intravital imaging. Current Opinion in Cell Biology, 2021, 72, 41-53.	5.4	7
32	Fgfr1 conditional-knockout in neural crest cells induces heterotopic chondrogenesis and osteogenesis in mouse frontal bones. Medical Molecular Morphology, 2019, 52, 156-163.	1.0	5
33	Shedding new light on RhoA signalling as a drug target <i>in vivo</i> using a novel RhoA-FRET biosensor mouse. Small GTPases, 2020, 11, 240-247.	1.6	5
34	ROR1 and ROR2 expression in pancreatic cancer. BMC Cancer, 2021, 21, 1199.	2.6	4
35	Abstract PR07: A biosensor mouse to predict the dissociation and spread of pancreatic cancer. , 2017, , .		1

 $_{36}$ Unmixing spectrally overlapping FRET biosensors in vivo using multispectral FLIM (Conference) Tj ETQq0 0 0 rgBT /Overlock $_0^{10}$ Tf 50 62