Cathal John Kearney

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6948013/publications.pdf

Version: 2024-02-01

40 papers 2,877 citations

331259 21 h-index 276539 41 g-index

42 all docs 42 docs citations

times ranked

42

5349 citing authors

#	Article	IF	CITATIONS
1	Versatility of unsaturated polyesters from electrospun macrolactones: <scp>RGD</scp> immobilization to increase cell attachment. Journal of Biomedical Materials Research - Part A, 2022, 110, 257-265.	2.1	7
2	Effects of vasopressor agents on the development of pressure ulcers in critically ill patients: a systematic review. Journal of Wound Care, 2022, 31, 266-277.	0.5	7
3	Development of wound healing scaffolds with precisely-triggered sequential release of therapeutic nanoparticles. Biomaterials Science, 2021, 9, 4278-4288.	2.6	22
4	Synthesis of bilayer films from regenerated cellulose nanofibers and poly(globalide) for skin tissue engineering applications. Carbohydrate Polymers, 2021, 252, 117201.	5.1	19
5	The lubricating effect of iPS-reprogrammed fibroblasts on collagen-GAG scaffolds for cartilage repair applications. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 114, 104174.	1.5	3
6	The Development of Tissue Engineering Scaffolds Using Matrix from iPS-Reprogrammed Fibroblasts. Methods in Molecular Biology, 2021, , 273-283.	0.4	2
7	Hydroxyapatite sonosensitization of ultrasoundâ€triggered, thermally responsive hydrogels: An onâ€demand delivery system for bone repair applications. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2021, 109, 1622-1633.	1.6	13
8	Optimization of extracellular matrix production from human induced pluripotent stem cellâ€derived fibroblasts for scaffold fabrication for application in wound healing. Journal of Biomedical Materials Research - Part A, 2021, 109, 1803-1811.	2.1	15
9	The economic impact of pressure ulcers among patients in intensive care units. A systematic review. Journal of Tissue Viability, 2021, 30, 168-177.	0.9	17
10	Antimicrobial and degradable triazolinedione (TAD) crosslinked polypeptide hydrogels. Journal of Materials Chemistry B, 2021, 9, 5456-5464.	2.9	10
11	Therapeutics on the clock: Circadian medicine in the treatment of chronic inflammatory diseases. Biochemical Pharmacology, 2020, 182, 114254.	2.0	21
12	Scaffolds Functionalized with Matrix from Induced Pluripotent Stem Cell Fibroblasts for Diabetic Wound Healing. Advanced Healthcare Materials, 2020, 9, e2000307.	3.9	19
13	The Use of Genipin as an Effective, Biocompatible, Antiâ€Inflammatory Crossâ€Linking Method for Nerve Guidance Conduits. Advanced Biology, 2020, 4, e1900212.	3.0	18
14	Polyesters with main and side chain phosphoesters as structural motives for biocompatible electrospun fibres. Polymer Chemistry, 2020, 11, 2157-2165.	1.9	11
15	Plateletâ€derived growth factor stabilises vascularisation in collagenâ€glycosaminoglycan scaffolds <i>in vitro</i> . Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 261-273.	1.3	11
16	Collagen scaffolds functionalised with copper-eluting bioactive glass reduce infection and enhance osteogenesis and angiogenesis both in vitro and in vivo. Biomaterials, 2019, 197, 405-416.	5.7	146
17	Physical Structuring of Injectable Polymeric Systems to Controllably Deliver Nanosized Extracellular Vesicles. Advanced Healthcare Materials, 2019, 8, e1801604.	3.9	27
18	Functionalising Collagen-Based Scaffolds With Platelet-Rich Plasma for Enhanced Skin Wound Healing Potential. Frontiers in Bioengineering and Biotechnology, 2019, 7, 371.	2.0	53

#	Article	IF	Citations
19	Macrophage Polarization in Response to Collagen Scaffold Stiffness Is Dependent on Cross-Linking Agent Used To Modulate the Stiffness. ACS Biomaterials Science and Engineering, 2019, 5, 544-552.	2.6	60
20	Electroconductive Biohybrid Collagen/Pristine Graphene Composite Biomaterials with Enhanced Biological Activity. Advanced Materials, 2018, 30, e1706442.	11.1	81
21	Staphylococcal Osteomyelitis: Disease Progression, Treatment Challenges, and Future Directions. Clinical Microbiology Reviews, 2018, 31, .	5.7	270
22	Development of magnetically active scaffolds as intrinsically-deformable bioreactors. MRS Communications, 2017, 7, 367-374.	0.8	3
23	Direct UV-Triggered Thiol–ene Cross-Linking of Electrospun Polyester Fibers from Unsaturated Poly(macrolactone)s and Their Drug Loading by Solvent Swelling. Biomacromolecules, 2017, 18, 4292-4298.	2.6	21
24	Infrapatellar Fat Pad Stem Cells: From Developmental Biology to Cell Therapy. Stem Cells International, 2017, 2017, 1-10.	1.2	34
25	DNA Origami: Folded DNAâ€Nanodevices That Can Direct and Interpret Cell Behavior. Advanced Materials, 2016, 28, 5509-5524.	11.1	54
26	Special Collection: Closing the Gaps in Skin Wound Healing. Tissue Engineering - Part A, 2016, 22, 401-402.	1.6	1
27	Sequential release of nanoparticle payloads from ultrasonically burstable capsules. Biomaterials, 2016, 75, 91-101.	5.7	45
28	Switchable Release of Entrapped Nanoparticles from Alginate Hydrogels. Advanced Healthcare Materials, 2015, 4, 1634-1639.	3.9	50
29	Substance P Promotes Wound Healing in Diabetes by Modulating Inflammation and Macrophage Phenotype. American Journal of Pathology, 2015, 185, 1638-1648.	1.9	170
30	Biomaterial based modulation of macrophage polarization: a review and suggested design principles. Materials Today, 2015, 18, 313-325.	8.3	629
31	Three-Dimensional Human Tissue Models That Incorporate Diabetic Foot Ulcer-Derived Fibroblasts Mimic <i>In Vivo</i> Features of Chronic Wounds. Tissue Engineering - Part C: Methods, 2015, 21, 499-508.	1.1	69
32	Sustained Delivery of VEGF Maintains Innervation and Promotes Reperfusion in Ischemic Skeletal Muscles Via NGF/GDNF Signaling. Molecular Therapy, 2014, 22, 1243-1253.	3.7	77
33	Ultrasound-triggered disruption and self-healing of reversibly cross-linked hydrogels for drug delivery and enhanced chemotherapy. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9762-9767.	3.3	372
34	Refilling drug delivery depots through the blood. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12722-12727.	3.3	84
35	Macroscale delivery systems for molecular and cellular payloads. Nature Materials, 2013, 12, 1004-1017.	13.3	251
36	The Use of Extracorporeal Shock Wave-Stimulated Periosteal Cells for Orthotopic Bone Generation. Tissue Engineering - Part A, 2012, 18, 1500-1508.	1.6	23

#	Article	IF	CITATIONS
37	Clinical Application of Extracorporeal Shock Wave Therapy inÂOrthopedics: Focused versus Unfocused Shock Waves. Ultrasound in Medicine and Biology, 2012, 38, 1673-1680.	0.7	53
38	Extracorporeal shockwave-induced expression of lubricin in tendons and septa. Cell and Tissue Research, 2011, 346, 255-262.	1.5	32
39	Extracorporeal shock waveâ€induced proliferation of periosteal cells. Journal of Orthopaedic Research, 2011, 29, 1536-1543.	1.2	17
40	Nanoscale Anisotropic Plastic Deformation in Single Crystal Aragonite. Physical Review Letters, 2006, 96, 255505.	2.9	58