Sanzhen Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6947651/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The B73 Maize Genome: Complexity, Diversity, and Dynamics. Science, 2009, 326, 1112-1115.	6.0	3,612
2	Gene targeting by the <scp>TAL</scp> effector PthXo2 reveals cryptic resistance gene for bacterial blight of rice. Plant Journal, 2015, 82, 632-643.	2.8	409
3	Gene Mapping via Bulked Segregant RNA-Seq (BSR-Seq). PLoS ONE, 2012, 7, e36406.	1.1	297
4	RD26 mediates crosstalk between drought and brassinosteroid signalling pathways. Nature Communications, 2017, 8, 14573.	5.8	202
5	Mu Transposon Insertion Sites and Meiotic Recombination Events Co-Localize with Epigenetic Marks for Open Chromatin across the Maize Genome. PLoS Genetics, 2009, 5, e1000733.	1.5	196
6	FERONIA Receptor Kinase Contributes to Plant Immunity by Suppressing Jasmonic Acid Signaling in Arabidopsis thaliana. Current Biology, 2018, 28, 3316-3324.e6.	1.8	154
7	Heritable Epigenetic Variation among Maize Inbreds. PLoS Genetics, 2011, 7, e1002372.	1.5	150
8	<i>Roothairless5</i> , which functions in maize (<i><scp>Z</scp>ea mays</i> L.) root hair initiation and elongation encodes a monocotâ€specific <scp>NADPH</scp> oxidase. Plant Journal, 2014, 79, 729-740.	2.8	118
9	tGBS® genotyping-by-sequencing enables reliable genotyping of heterozygous loci. Nucleic Acids Research, 2017, 45, e178-e178.	6.5	115
10	A Comprehensive Analysis of Alternative Splicing in Paleopolyploid Maize. Frontiers in Plant Science, 2017, 8, 694.	1.7	109
11	Effector gene reshuffling involves dispensable mini-chromosomes in the wheat blast fungus. PLoS Genetics, 2019, 15, e1008272.	1.5	103
12	Long read and single molecule DNA sequencing simplifies genome assembly and TAL effector gene analysis of Xanthomonas translucens. BMC Genomics, 2016, 17, 21.	1.2	97
13	The maize <i>brown midrib2</i> (<i>bm2</i>) gene encodes a methylenetetrahydrofolate reductase that contributes to lignin accumulation. Plant Journal, 2014, 77, 380-392.	2.8	94
14	A rare single nucleotide variant in <i>Pm5e</i> confers powdery mildew resistance in common wheat. New Phytologist, 2020, 228, 1011-1026.	3.5	92
15	Mendelian and Non-Mendelian Regulation of Gene Expression in Maize. PLoS Genetics, 2013, 9, e1003202.	1.5	84
16	B73-Mo17 Near-Isogenic Lines Demonstrate Dispersed Structural Variation in Maize Â. Plant Physiology, 2011, 156, 1679-1690.	2.3	76
17	The Maize glossy13 Gene, Cloned via BSR-Seq and Seq-Walking Encodes a Putative ABC Transporter Required for the Normal Accumulation of Epicuticular Waxes. PLoS ONE, 2013, 8, e82333.	1.1	75
18	The Aux/IAA gene rum1 involved in seminal and lateral root formation controls vascular patterning in maize (Zea mays L.) primary roots. Journal of Experimental Botany, 2014, 65, 4919-4930.	2.4	69

Sanzhen Liu

#	Article	IF	CITATIONS
19	High-Throughput Genetic Mapping of Mutants via Quantitative Single Nucleotide Polymorphism Typing. Genetics, 2010, 184, 19-26.	1.2	66
20	Histone Lysine Methyltransferase SDG8 Is Involved in Brassinosteroid-Regulated Gene Expression in Arabidopsis thaliana. Molecular Plant, 2014, 7, 1303-1315.	3.9	64
21	Maize glossy6 is involved in cuticular wax deposition and drought tolerance. Journal of Experimental Botany, 2019, 70, 3089-3099.	2.4	62
22	<i>Xanthomonas translucens</i> commandeers the host rate-limiting step in ABA biosynthesis for disease susceptibility. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20938-20946.	3.3	58
23	Substantial contribution of genetic variation in the expression of transcription factors to phenotypic variation revealed by eRD-GWAS. Genome Biology, 2017, 18, 192.	3.8	56
24	Xa1 Allelic R Genes Activate Rice Blight Resistance Suppressed by Interfering TAL Effectors. Plant Communications, 2020, 1, 100087.	3.6	52
25	Systematic comparison of the fidelity of aRNA, mRNA and T-RNA on gene expression profiling using cDNA microarray. Journal of Biotechnology, 2004, 107, 19-28.	1.9	51
26	The maize <i>brown midrib4</i> (<i>bm4)</i> gene encodes a functional folylpolyglutamate synthase. Plant Journal, 2015, 81, 493-504.	2.8	42
27	Increased Power and Accuracy of Causal Locus Identification in Time Series Genome-wide Association in Sorghum. Plant Physiology, 2020, 183, 1898-1909.	2.3	39
28	DLA-Based Strategies for Cloning Insertion Mutants: Cloning the <i>gl4</i> Locus of Maize Using <i>Mu</i> Transposon Tagged Alleles. Genetics, 2009, 183, 1215-1225.	1.2	38
29	Homologues of <i>CsLOB1</i> in citrus function as disease susceptibility genes in citrus canker. Molecular Plant Pathology, 2017, 18, 798-810.	2.0	38
30	Complete Genome Sequencing and Targeted Mutagenesis Reveal Virulence Contributions of Tal2 and Tal4b of Xanthomonas translucens pv. undulosa ICMP11055 in Bacterial Leaf Streak of Wheat. Frontiers in Microbiology, 2017, 8, 1488.	1.5	37
31	Coâ€expression analysis aids in the identification of genes in the cuticular wax pathway in maize. Plant Journal, 2019, 97, 530-542.	2.8	34
32	Chromosome-level genome assembly of a regenerable maize inbred line A188. Genome Biology, 2021, 22, 175.	3.8	32
33	Characterization of maize roothairless6 which encodes a D-type cellulose synthase and controls the switch from bulge formation to tip growth. Scientific Reports, 2016, 6, 34395.	1.6	31
34	Cloning of the broadly effective wheat leaf rust resistance gene Lr42 transferred from Aegilops tauschii. Nature Communications, 2022, 13, .	5.8	29
35	TILL-D: An Aegilops tauschii TILLING Resource for Wheat Improvement. Frontiers in Plant Science, 2018, 9, 1665.	1.7	26
36	Changes in genome content generated via segregation of nonâ€allelic homologs. Plant Journal, 2012, 72, 390-399.	2.8	24

SANZHEN LIU

#	Article	IF	CITATIONS
37	A Dimorphic and Virulence-Enhancing Endosymbiont Bacterium Discovered in <i>Rhizoctonia solani</i> . Phytobiomes Journal, 2017, 1, 14-23.	1.4	24
38	Genetic mapping of a major gene in triticale conferring resistance to bacterial leaf streak. Theoretical and Applied Genetics, 2018, 131, 649-658.	1.8	23
39	Analysis of Extreme Phenotype Bulk Copy Number Variation (XP-CNV) Identified the Association of rp1 with Resistance to Goss's Wilt of Maize. Frontiers in Plant Science, 2018, 9, 110.	1.7	23
40	Genome-wide analysis of regulation of gene expression and H3K9me2 distribution by JIL-1 kinase mediated histone H3S10 phosphorylation in Drosophila. Nucleic Acids Research, 2014, 42, 5456-5467.	6.5	21
41	JRmGRN: joint reconstruction of multiple gene regulatory networks with common hub genes using data from multiple tissues or conditions. Bioinformatics, 2018, 34, 3470-3478.	1.8	19
42	Emergence of a New Population of Rathayibacter toxicus: An Ecologically Complex, Geographically Isolated Bacterium. PLoS ONE, 2016, 11, e0156182.	1.1	19
43	Cellular Dynamics and Genomic Identity of Centromeres in Cereal Blast Fungus. MBio, 2019, 10, .	1.8	18
44	Temporal Small RNA Expression Profiling under Drought Reveals a Potential Regulatory Role of Small Nucleolar RNAs in the Drought Responses of Maize. Plant Genome, 2019, 12, 180058.	1.6	17
45	Unbiased K-mer Analysis Reveals Changes in Copy Number of Highly Repetitive Sequences During Maize Domestication and Improvement. Scientific Reports, 2017, 7, 42444.	1.6	16
46	Genomic Acquisitions in Emerging Populations of <i>Xanthomonas vasicola</i> pv. <i>vasculorum</i> Infecting Corn in the United States and Argentina. Phytopathology, 2020, 110, 1161-1173.	1.1	16
47	Early Drought-Responsive Genes Are Variable and Relevant to Drought Tolerance. G3: Genes, Genomes, Genetics, 2020, 10, 1657-1670.	0.8	13
48	Multiple origins of Indian dwarf wheat by mutations targeting the TREE domain of a GSK3-like kinase for drought tolerance, phosphate uptake, and grain quality. Theoretical and Applied Genetics, 2021, 134, 633-645.	1.8	12
49	Study on the Dynamic Behavior of a DNA Microarray. Journal of Nanoscience and Nanotechnology, 2005, 5, 1249-1255.	0.9	11
50	Characterization, Genetic Analyses, and Identification of QTLs Conferring Metabolic Resistance to a 4-Hydroxyphenylpyruvate Dioxygenase Inhibitor in Sorghum (Sorghum bicolor). Frontiers in Plant Science, 2020, 11, 596581.	1.7	11
51	A conserved hypothetical gene is required but not sufficient for Ptr ToxC production in Pyrenophora tritici-repentis. Molecular Plant-Microbe Interactions, 2022, , .	1.4	11
52	Identification of Brassinosteroid Target Genes by Chromatin Immunoprecipitation Followed by High-Throughput Sequencing (ChIP-seq) and RNA-Sequencing. Methods in Molecular Biology, 2017, 1564, 63-79.	0.4	10
53	Analysis of the factors affecting the accuracy of detection for single base alterations by oligonucleotide microarray. Experimental and Molecular Medicine, 2005, 37, 71-77.	3.2	8
54	Massive Shift in Gene Expression during Transitions between Developmental Stages of the Gall Midge, Mayetiola Destructor. PLoS ONE, 2016, 11, e0155616.	1.1	8

SANZHEN LIU

#	Article	IF	CITATIONS
55	Factorial estimating assembly base errors using k-mer abundance difference (KAD) between short reads and genome assembled sequences. NAR Genomics and Bioinformatics, 2020, 2, Iqaa075.	1.5	8
56	Ectopic Expression of a Heterologous Glutaredoxin Enhances Drought Tolerance and Grain Yield in Field Grown Maize. International Journal of Molecular Sciences, 2021, 22, 5331.	1.8	8
57	A genome-wide genetic linkage map and reference quality genome sequence for a new race in the wheat pathogen Pyrenophora tritici-repentis. Fungal Genetics and Biology, 2021, 152, 103571.	0.9	8
58	Comparison of Hybridization Behavior between Double and Single Strand of Targets and the Application of Asymmetric PCR Targets in cDNA Microarray. BMB Reports, 2004, 37, 439-444.	1.1	8
59	Genes Expressed Differentially in Hessian Fly Larvae Feeding in Resistant and Susceptible Plants. International Journal of Molecular Sciences, 2016, 17, 1324.	1.8	7
60	Intragenic Meiotic Crossovers Generate Novel Alleles with Transgressive Expression Levels. Molecular Biology and Evolution, 2018, 35, 2762-2772.	3.5	4
61	Identification of biological pathway and process regulators using sparse partial least squares and triple-gene mutual interaction. Scientific Reports, 2021, 11, 13174.	1.6	2
62	Digestion–Ligation–Amplification (DLA): A Simple Genome Walking Method to Amplify Unknown Sequences Flanking Mutator (Mu) Transposons and Thereby Facilitate Gene Cloning. Methods in Molecular Biology, 2013, 1057, 167-176.	0.4	2
63	Multi-Omics Analyses Reveal Systemic Insights into Maize Vivipary. Plants, 2021, 10, 2437.	1.6	2
64	HB-PLS: A statistical method for identifying biological process or pathway regulators by integrating Huber loss and Berhu penalty with partial least squares regression. Forestry Research, 2021, 1, 0-0.	0.5	1