
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/694755/publications.pdf Version: 2024-02-01

7нило Ци

#	Article	IF	CITATIONS
1	A Fully Conjugated 3D Covalent Organic Framework Exhibiting Bandâ€like Transport with Ultrahigh Electron Mobility. Angewandte Chemie - International Edition, 2021, 60, 9321-9325.	7.2	59
2	Effect of EPS and its forms of aerobic granular sludge on sludge aggregation performance during granulation process based on XDLVO theory. Science of the Total Environment, 2021, 795, 148682.	3.9	70
3	A Novel Parallel Assembly Sequence Planning Method for Complex Products Based on PSOBC. Mathematical Problems in Engineering, 2020, 2020, 1-11.	0.6	3
4	Self-Powered and Green Ionic-Type Thermoelectric Paper Chips for Early Fire Alarming. ACS Applied Materials & Interfaces, 2020, 12, 27691-27699.	4.0	57
5	Cluster Formation and Its Role in the Elimination of Azeotrope of the Acetone–Methanol Mixture by Ionic Liquids. Industrial & Engineering Chemistry Research, 2020, 59, 13271-13282.	1.8	8
6	DNA sensors, crucial receptors to resist pathogens, are deregulated in colorectal cancer and associated with initiation and progression of the disease. Journal of Cancer, 2020, 11, 893-905.	1.2	15
7	Camellia cake extracts reduce burn injury through suppressing inflammatory responses and enhancing collagen synthesis. Food and Nutrition Research, 2020, 64, .	1.2	10
8	Membrane potential drives direct translocation of cell-penetrating peptides. Nanoscale, 2019, 11, 1949-1958.	2.8	36
9	A permeation model of shale gas in cylindrical-like kerogen pores at geological conditions. Chemical Engineering Science, 2019, 207, 457-463.	1.9	6
10	Curvature dependence of Henry's law constant and nonideality of gas equilibrium for curved vapor–liquid interfaces. AICHE Journal, 2019, 65, e16604.	1.8	3
11	Insight into the Performance of Acid Gas in Ionic Liquids by Molecular Simulation. Industrial & Engineering Chemistry Research, 2019, 58, 1443-1453.	1.8	23
12	The Size Effect of PdCu Bimetallic Nanoparticles on Oxygen Reduction Reaction Activity. ChemElectroChem, 2018, 5, 2571-2576.	1.7	10
13	Occurrence and Distribution of Tetracycline Antibiotics and Resistance Genes in Longshore Sediments of the Three Gorges Reservoir, China. Frontiers in Microbiology, 2018, 9, 1911.	1.5	29
14	Elimination of the azeotropic point of acetone and methanol by 1,3-dimethylimidazolium dimethylphosphate: an ab initio calculation study. Journal of Molecular Modeling, 2017, 23, 74.	0.8	4
15	Direction Dependence of Adhesion Force for Droplets on Rough Substrates. Langmuir, 2017, 33, 2472-2476.	1.6	17
16	From mixed to three-layer core/shell PtCu nanoparticles: ligand-induced surface segregation to enhance electrocatalytic activity. Nanoscale, 2017, 9, 8945-8951.	2.8	24
17	Erythrocyte membrane skeleton inhibits nanoparticle endocytosis. AIP Advances, 2017, 7, .	0.6	12
18	Molecular mechanism for liquid–liquid extraction: Twoâ€film theory revisited. AICHE Journal, 2017, 63, 2464-2470.	1.8	17

#	Article	IF	CITATIONS
19	How nanobubbles lose stability: Effects of surfactants. Applied Physics Letters, 2017, 111, .	1.5	18
20	Solvent Exchange Leading to Nanobubble Nucleation: A Molecular Dynamics Study. Langmuir, 2017, 33, 8090-8096.	1.6	33
21	What experiments on pinned nanobubbles can tell about the critical nucleus for bubble nucleation. European Physical Journal E, 2017, 40, 114.	0.7	13
22	A density functional theory study of sulfur adsorption on Ag–Au nanoalloys. Computational and Theoretical Chemistry, 2016, 1085, 66-74.	1.1	3
23	Interaction of CO2 with metal cluster-functionalized ionic liquids. Journal of CO2 Utilization, 2016, 16, 257-263.	3.3	10
24	Understanding the mechanism of LCST phase separation of mixed ionic liquids in water by MD simulations. Physical Chemistry Chemical Physics, 2016, 18, 23238-23245.	1.3	24
25	Facile Synthesis of PdAgCo Trimetallic Nanoparticles for Formic Acid Electrochemical Oxidation. Chemistry Letters, 2016, 45, 732-734.	0.7	6
26	Highly sensitive and selective colorimetric detection of sulphide using Ag–Au nanoalloys: a DFT study. RSC Advances, 2016, 6, 16285-16291.	1.7	7
27	Characterization of dissolved organic matter in landfill leachate during the combined treatment process of air stripping, Fenton, SBR and coagulation. Waste Management, 2015, 41, 111-118.	3.7	159
28	Optical properties of Ag–Au nanoclusters for sulphide sensing from TDDFT calculations. Journal of Alloys and Compounds, 2015, 653, 363-368.	2.8	1
29	Interfacial layering and orientation ordering of ionic liquid around single-walled carbon nanotube: a molecular dynamics study. Molecular Simulation, 2015, 41, 271-280.	0.9	17
30	Beyond Cassie equation: Local structure of heterogeneous surfaces determines the contact angles of microdroplets. Scientific Reports, 2014, 4, 5822.	1.6	24
31	Efficient capture of carbon dioxide with novel massâ€ŧransfer intensification device using ionic liquids. AICHE Journal, 2013, 59, 2957-2965.	1.8	56
32	Cosolvent or Antisolvent? A Molecular View of the Interface between Ionic Liquids and Cellulose upon Addition of Another Molecular Solvent. Journal of Physical Chemistry B, 2013, 117, 11780-11792.	1.2	81
33	Understanding the interactions between tris(pentafluoroethyl)-trifluorophosphate-based ionic liquid and small molecules from molecular dynamics simulation. Science China Chemistry, 2012, 55, 1557-1565.	4.2	13
34	Local Structure Evolution and its Connection to Thermodynamic and Transport Properties of 1-Butyl-3-methylimidazolium Tetrafluoroborate and Water Mixtures by Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2012, 116, 3249-3263.	1.2	85
35	Molecular simulations of imidazolium-based ionic liquids with [l-lactate]â^' anion and the binary mixture of [bmim][l-lactate] and 1-octanol. Journal of Molecular Liquids, 2012, 165, 63-70.	2.3	5
36	Improved Classical United-Atom Force Field for Imidazolium-Based Ionic Liquids: Tetrafluoroborate, Hexafluorophosphate, Methylsulfate, Trifluoromethylsulfonate, Acetate, Trifluoroacetate, and Bis(trifluoromethylsulfonyl)amide. Journal of Physical Chemistry B, 2011, 115, 10027-10040.	1.2	138

#	Article	IF	CITATIONS
37	Improved United-Atom Force Field for 1-Alkyl-3-methylimidazolium Chloride. Journal of Physical Chemistry B, 2010, 114, 4572-4582.	1.2	76
38	Viscosities of the Mixtures of 1-Ethyl-3-Methylimidazolium Chloride with Water, Acetonitrile and Glucose: A Molecular Dynamics Simulation and Experimental Study. Journal of Physical Chemistry B, 2010, 114, 5790-5794.	1.2	52
39	United-atom force field for [emim][lactate] and molecular simulation of mixture of [emim][lactate] and water. Computational and Theoretical Chemistry, 2009, 915, 132-140.	1.5	8
40	Absorption of CO2 in the Ionic Liquid 1-n-Hexyl-3-methylimidazolium Tris(pentafluoroethyl)trifluorophosphate ([hmim][FEP]): A Molecular View by Computer Simulations. Journal of Physical Chemistry B, 2009, 113, 7591-7598.	1.2	123
41	Screening of ionic liquids to capture CO ₂ by COSMOâ€RS and experiments. AICHE Journal, 2008, 54, 2717-2728.	1.8	256
42	Non-equilibrium molecular dynamics simulation on permeation and separation of H2/CO in nanoporous carbon membranes. Separation and Purification Technology, 2008, 64, 71-77.	3.9	13
43	Diffusion of H2, CO, N2, O2 and CH4 Through Nanoporous Carbon Membranes. Chinese Journal of Chemical Engineering, 2008, 16, 709-714.	1.7	7
44	Force Field Refinement and Molecular Simulations of Imidazolium-Based Ionic Liquids. ACS Symposium Series, 2007, , 70-85.	0.5	1
45	A novel united-atom force field for imidazolium-based ionic liquids. Physical Chemistry Chemical Physics, 2006, 8, 1096.	1.3	115
46	Water formation on Pt(111) surfaces at high temperatures studied by kinetic Monte Carlo simulations. Applied Surface Science, 2005, 242, 353-361.	3.1	7
47	An equation of state for electrolyte solutions by a combination of low-density expansion of non-primitive mean spherical approximation and statistical associating fluid theory. Fluid Phase Equilibria, 2005, 227, 147-156.	1.4	57
48	Molecular dynamics simulation of shell-symmetric Pd nanoclusters. Molecular Simulation, 2005, 31, 1057-1061.	0.9	4
49	Molecular dynamics simulation of room-temperature ionic liquid mixture of [bmim][BF4] and acetonitrile by a refined force field. Physical Chemistry Chemical Physics, 2005, 7, 2771.	1.3	173
50	MOLECULAR DYNAMICS SIMULATION OF IONIC LIQUIDS WITH IMIDAZOLIUM CATIONS. , 2004, , .		0
51	A Refined Force Field for Molecular Simulation of Imidazolium-Based Ionic Liquids. Journal of Physical Chemistry B, 2004, 108, 12978-12989.	1.2	507
52	THE MELTING BEHAVIOR OF BIMETALLIC CU-NI NANOCLUSTER ON STATIC GRAPHITE SUBSTRATE: A MOLECULAR DYNAMICS SIMULATION. , 2004, , .		0
53	Recent Advances in the Use of MSA Approach to Electrolyte and Charged Colloid Solutions. Molecular Simulation, 2003, 29, 735-742.	0.9	1
54	Study on the analytical solution of the MSA for a one-component two-Yukawa potential in bovine serum albumin—NaC1 aqueous solution. Molecular Physics, 2002, 100, 3251-3257.	0.8	8

#	Article	IF	CITATIONS
55	Low-Density Expansion of the Solution of Mean Spherical Approximation for Ionâ^'Dipole Mixtures. Journal of Physical Chemistry B, 2002, 106, 5266-5274.	1.2	13
56	Equation of State for Nonpolar, Polar, Chain, and Associating Fluids Based on the Dipolar Yukawa Potential. Industrial & Engineering Chemistry Research, 2001, 40, 973-979.	1.8	29
57	Comparison of perturbation theory and mean spherical approximation for polar fluids and ion–dipole mixtures based on molecular simulation data. Fluid Phase Equilibria, 2001, 178, 45-71.	1.4	9
58	Comparison of equations of state for pure Lennard–Jones fluids and mixtures with molecular simulation data. Fluid Phase Equilibria, 2000, 173, 189-209.	1.4	15