List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6946496/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Complete Genome Resources for <i>Xylella fastidiosa</i> Strains AlmaEM3 and BB08-1 Reveal Prophage-Associated Structural Variation Among Blueberry-Infecting Strains. Phytopathology, 2022, 112, 732-736.	2.2	4
2	Correlation of banana productivity levels and soil morphological properties using regularized optimal scaling regression. Catena, 2022, 208, 105718.	5.0	30
3	<i>Xylella fastidiosa</i> 's relationships: the bacterium, the host plants, and the plant microbiome. New Phytologist, 2022, 234, 1598-1605.	7.3	17
4	Consumption of Tritordeum Bread Reduces Immunogenic Gluten Intake without Altering the Gut Microbiota. Foods, 2022, 11, 1439.	4.3	4
5	Primer Choice and Xylem-Microbiome-Extraction Method Are Important Determinants in Assessing Xylem Bacterial Community in Olive Trees. Plants, 2022, 11, 1320.	3.5	4
6	Use of traC Gene to Type the Incidence and Distribution of pXFAS_5235 Plasmid-Bearing Strains of Xylella fastidiosa subsp. fastidiosa ST1 in Spain. Plants, 2022, 11, 1562.	3.5	4
7	Irrigation modulates entomopathogenic nematode community and its soil food web in olive groves under different agricultural managements. Agriculture, Ecosystems and Environment, 2022, 337, 108070.	5.3	3
8	Tritordeum breads are well tolerated with preference over <scp>glutenâ€free</scp> breads in <scp>nonâ€celiac wheatâ€sensitive</scp> patients and its consumption induce changes in gut bacteria. Journal of the Science of Food and Agriculture, 2021, 101, 3508-3517.	3.5	13
9	Diversity of Phytophthora Species Detected in Disturbed and Undisturbed British Soils Using High-Throughput Sequencing Targeting ITS rRNA and COI mtDNA Regions. Forests, 2021, 12, 229.	2.1	16
10	Verticillium dahliae Inoculation and in vitro Propagation Modify the Xylem Microbiome and Disease Reaction to Verticillium Wilt in a Wild Olive Genotype. Frontiers in Plant Science, 2021, 12, 632689.	3.6	14
11	Evaluation of Established Methods for DNA Extraction and Primer Pairs Targeting 16S rRNA Gene for Bacterial Microbiota Profiling of Olive Xylem Sap. Frontiers in Plant Science, 2021, 12, 640829.	3.6	14
12	Landscape Epidemiology of Xylella fastidiosa in the Balearic Islands. Agronomy, 2021, 11, 473.	3.0	34
13	First Report of Verticillium Wilt Caused <i>by Verticillium dahliae</i> on Russian Olive (<i>Elaeagnus) Tj ETQq1 1</i>	0.784314 1.4	rgBT /Over
14	Fusarium Wilt of Bananas: A Review of Agro-Environmental Factors in the Venezuelan Production System Affecting Its Development. Agronomy, 2021, 11, 986.	3.0	48
15	Evidence that <i>Xylella fastidiosa</i> is the Causal Agent of Almond Leaf Scorch Disease in Alicante, Mainland Spain (Iberian Peninsula). Plant Disease, 2021, 105, 3349-3352.	1.4	10
16	Metabolomic, Ionomic and Microbial Characterization of Olive Xylem Sap Reveals Differences According to Plant Age and Genotype. Agronomy, 2021, 11, 1179.	3.0	14
17	Detection of Xylella fastidiosa in almond orchards by synergic use of an epidemic spread model and remotely sensed plant traits. Remote Sensing of Environment, 2021, 260, 112420.	11.0	24
18	Going Beyond Soil Conservation with the Use of Cover Crops in Mediterranean Sloping Olive Orchards. Agronomy, 2021, 11, 1387.	3.0	4

BLANCA B LANDA

#	Article	IF	CITATIONS
19	Legacy effects of temporary grassland in annual crop rotation on soil ecosystem services. Science of the Total Environment, 2021, 780, 146140.	8.0	16
20	Discriminating Xylella fastidiosa from Verticillium dahliae infections in olive trees using thermal- and hyperspectral-based plant traits. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 179, 133-144.	11.1	29
21	Divergent abiotic spectral pathways unravel pathogen stress signals across species. Nature Communications, 2021, 12, 6088.	12.8	40
22	Emergence of a Plant Pathogen in Europe Associated with Multiple Intercontinental Introductions. Applied and Environmental Microbiology, 2020, 86, .	3.1	57
23	Relationship Between Soil Properties and Banana Productivity in the Two Main Cultivation Areas in Venezuela. Journal of Soil Science and Plant Nutrition, 2020, 20, 2512-2524.	3.4	45
24	Phylogenetic inference enables reconstruction of a long-overlooked outbreak of almond leaf scorch disease (Xylella fastidiosa) in Europe. Communications Biology, 2020, 3, 560.	4.4	35
25	Development of A Nested-MultiLocus Sequence Typing Approach for A Highly Sensitive and Specific Identification of Xylella fastidiosa Subspecies Directly from Plant Samples. Agronomy, 2020, 10, 1099.	3.0	10
26	Complete Circularized Genome Data of Two Spanish strains of <i>Xylella fastidiosa</i> (IVIA5235 and) Tj ETQq0 0	0.rgBT /O	vgrlock 10
27	Insights into the epidemiology of Pierce's disease in vineyards of Mallorca, Spain. Plant Pathology, 2019, 68, 1458-1471.	2.4	37
28	Draft Genome Resources of Two Strains ("ESVL―and "IVIA5901â€) of <i>Xylella fastidiosa</i> Associated with Almond Leaf Scorch Disease in Alicante, Spain. Phytopathology, 2019, 109, 219-221.	2.2	24
29	Insights Into the Effect of Verticillium dahliae Defoliating-Pathotype Infection on the Content of Phenolic and Volatile Compounds Related to the Sensory Properties of Virgin Olive Oil. Frontiers in Plant Science, 2019, 10, 232.	3.6	26
30	Sex Differences in the Gut Microbiota as Potential Determinants of Gender Predisposition to Disease. Molecular Nutrition and Food Research, 2019, 63, e1800870.	3.3	103
31	Culture-Dependent and Culture-Independent Characterization of the Olive Xylem Microbiota: Effect of Sap Extraction Methods. Frontiers in Plant Science, 2019, 10, 1708.	3.6	58
32	Effects of vegetation management intensity on biodiversity and ecosystem services in vineyards: A metaâ€analysis. Journal of Applied Ecology, 2018, 55, 2484-2495.	4.0	165
33	Comparison of genotyping by sequencing and microsatellite markers for unravelling population structure in the clonal fungus <i>Verticillium dahliae</i> . Plant Pathology, 2018, 67, 76-86.	2.4	14
34	Updated pest categorisation of XylellaÂfastidiosa. EFSA Journal, 2018, 16, e05357.	1.8	45

35	The Dietary Intervention of Transgenic Low-Gliadin Wheat Bread in Patients with Non-Celiac Gluten Sensitivity (NCGS) Showed No Differences with Gluten Free Diet (GFD) but Provides Better Gut Microbiota Profile. Nutrients, 2018, 10, 1964.	4.1	28
36	Draft Genome Sequence of Xylella fastidiosa subsp. <i>fastidiosa</i> Strain IVIA5235, Isolated from Prunus avium in Mallorca Island, Spain. Microbiology Resource Announcements, 2018, 7, .	0.6	13

#	Article	IF	CITATIONS
37	Influence of gender and menopausal status on gut microbiota. Maturitas, 2018, 116, 43-53.	2.4	153
38	Previsual symptoms of Xylella fastidiosa infection revealed in spectral plant-trait alterations. Nature Plants, 2018, 4, 432-439.	9.3	212
39	Genome-Wide Analysis Provides Evidence on the Genetic Relatedness of the Emergent <i>Xylella fastidiosa</i> Genotype in Italy to Isolates from Central America. Phytopathology, 2017, 107, 816-827.	2.2	61
40	First Detection of Xylella fastidiosa Infecting Cherry (Prunus avium) and Polygala myrtifolia Plants, in Mallorca Island, Spain. Plant Disease, 2017, 101, 1820-1820.	1.4	66
41	Consumption of Two Healthy Dietary Patterns Restored Microbiota Dysbiosis in Obese Patients with Metabolic Dysfunction. Molecular Nutrition and Food Research, 2017, 61, 1700300.	3.3	107
42	Variation of pathotypes and races and their correlations with clonal lineages in <i>Verticillium dahliae</i> . Plant Pathology, 2017, 66, 651-666.	2.4	51
43	Short communication: Local infection of opium poppy leaves by Peronospora somniferi sporangia can give rise to systemic infections and seed infection in resistant cultivars. Spanish Journal of Agricultural Research, 2017, 15, e10SC01.	0.6	2
44	Characterization of resistance against the oliveâ€defoliating <i>Verticillium dahliae</i> pathotype in selected clones of wild olive. Plant Pathology, 2016, 65, 1279-1291.	2.4	35
45	Detection and Quantification of the Entomopathogenic Fungal Endophyte Beauveria bassiana in Plants by Nested and Quantitative PCR. Methods in Molecular Biology, 2016, 1477, 161-166.	0.9	3
46	Assessment of the bacterial community in directly brined Aloreña de Málaga table olive fermentations by metagenetic analysis. International Journal of Food Microbiology, 2016, 236, 47-55.	4.7	39
47	A new stem nematode, Ditylenchus oncogenus n. sp. (Nematoda: Tylenchida), parasitizing sowthistle from Adriatic coast dunes in southern Italy. Journal of Helminthology, 2016, 90, 152-165.	1.0	27
48	Two Healthy Diets Modulate Gut Microbial Community Improving Insulin Sensitivity in a Human Obese Population. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 233-242.	3.6	223
49	The gut microbial community in metabolic syndrome patients is modified by diet. Journal of Nutritional Biochemistry, 2016, 27, 27-31.	4.2	166
50	Intestinal Microbiota Is Influenced by Gender and Body Mass Index. PLoS ONE, 2016, 11, e0154090.	2.5	511
51	Enhancement of the Knowledge on Fungal Communities in Directly Brined Aloreña de Málaga Green Olive Fermentations by Metabarcoding Analysis. PLoS ONE, 2016, 11, e0163135.	2.5	41
52	Soil Properties and Olive Cultivar Determine the Structure and Diversity of Plant-Parasitic Nematode Communities Infesting Olive Orchards Soils in Southern Spain. PLoS ONE, 2015, 10, e0116890.	2.5	38
53	Organic Amendments to Avocado Crops Induce Suppressiveness and Influence the Composition and Activity of Soil Microbial Communities. Applied and Environmental Microbiology, 2015, 81, 3405-3418.	3.1	43
54	Plant genotype-specific archaeal and bacterial endophytes but similar Bacillus antagonists colonize Mediterranean olive trees. Frontiers in Microbiology, 2015, 6, 138.	3.5	154

#	Article	IF	CITATIONS
55	Fusarium wilt of chickpeas: Biology, ecology and management. Crop Protection, 2015, 73, 16-27.	2.1	114
56	Influence of Edaphic, Climatic, and Agronomic Factors on the Composition and Abundance of Nitrifying Microorganisms in the Rhizosphere of Commercial Olive Crops. PLoS ONE, 2015, 10, e0125787.	2.5	44
57	Combined use of a new SNP-based assay and multilocus SSR markers to assess genetic diversity of Xylella fastidiosa subsp. pauca infecting citrus and coffee plants. International Microbiology, 2015, 18, 13-24.	2.4	5
58	Arbuscular Mycorhizal Fungi Associated with the Olive Crop across the Andalusian Landscape: Factors Driving Community Differentiation. PLoS ONE, 2014, 9, e96397.	2.5	33
59	Disentangling Peronospora on Papaver: Phylogenetics, Taxonomy, Nomenclature and Host Range of Downy Mildew of Opium Poppy (Papaver somniferum) and Related Species. PLoS ONE, 2014, 9, e96838.	2.5	38
60	Soil properties in organic olive orchards following different weed management in a rolling landscape of Andalusia, Spain. Renewable Agriculture and Food Systems, 2014, 29, 83-91.	1.8	40
61	Soil factors involved in the diversity and structure of soil bacterial communities in commercial organic olive orchards in <scp>S</scp> outhern <scp>S</scp> pain. Environmental Microbiology Reports, 2014, 6, 196-207.	2.4	18
62	Short communication. A survey of potential insect vectors of the plant pathogenic bacterium Xylella fastidiosa in three regions of Spain. Spanish Journal of Agricultural Research, 2014, 12, 795.	0.6	22
63	Detection of downy mildew of opium poppy using high-resolution multi-spectral and thermal imagery acquired with an unmanned aerial vehicle. Precision Agriculture, 2014, 15, 639-661.	6.0	57
64	The Hidden Habit of the Entomopathogenic Fungus Beauveria bassiana: First Demonstration of Vertical Plant Transmission. PLoS ONE, 2014, 9, e89278.	2.5	83
65	A Comparison of Real-Time PCR Protocols for the Quantitative Monitoring of Asymptomatic Olive Infections by <i>Verticillium dahliae</i> Pathotypes. Phytopathology, 2013, 103, 1058-1068.	2.2	33
66	In-planta detection and monitorization of endophytic colonization by a Beauveria bassiana strain using a new-developed nested and quantitative PCR-based assay and confocal laser scanning microscopy. Journal of Invertebrate Pathology, 2013, 114, 128-138.	3.2	69
67	Linking microbial functional diversity of olive rhizosphere soil to management systems in commercial orchards in southern Spain. Agriculture, Ecosystems and Environment, 2013, 181, 169-178.	5.3	41
68	Use of PGPR for Controlling Soilborne Fungal Pathogens: Assessing the Factors Influencing Its Efficacy. , 2013, , 259-292.		2
69	Seven new species of Trichodorus (Diphtherophorina, Trichodoridae) from Spain, an apparent centre of speciation. Nematology, 2013, 15, 57-100.	0.6	15
70	Sequence Variation in Two Protein-Coding Genes Correlates with Mycelial Compatibility Groupings in <i>Sclerotium rolfsii</i> . Phytopathology, 2013, 103, 479-487.	2.2	8
71	Quantitative and Microscopic Assessment of Compatible and Incompatible Interactions between Chickpea Cultivars and Fusarium oxysporum f. sp. ciceris Races. PLoS ONE, 2013, 8, e61360.	2.5	49
72	Organic amendments and land management affect bacterial community composition, diversity and biomass in avocado crop soils. Plant and Soil, 2012, 357, 215-226.	3.7	68

#	Article	IF	CITATIONS
73	Nematode community populations in the rhizosphere of cultivated olive differs according to the plant genotype. Soil Biology and Biochemistry, 2012, 45, 168-171.	8.8	33
74	Real-Time PCR Quantification of <i>Peronospora arborescens</i> , the Opium Poppy Downy Mildew Pathogen, in Seed Stocks and Symptomless Infected Plants. Plant Disease, 2011, 95, 143-152.	1.4	35
75	Genetic Structure of <i>Xiphinema pachtaicum</i> and <i>X. index</i> Populations Based on Mitochondrial DNA Variation. Phytopathology, 2011, 101, 1168-1175.	2.2	33
76	Region-Wide Analysis of Genetic Diversity in <i>Verticillium dahliae</i> Populations Infecting Olive in Southern Spain and Agricultural Factors Influencing the Distribution and Prevalence of Vegetative Compatibility Groups and Pathotypes. Phytopathology, 2011, 101, 304-315.	2.2	76
77	<i>Ditylenchus gigas</i> n. sp. parasitizing broad bean: a new stem nematode singled out from the <i>Ditylenchus dipsaci</i> species complex using a polyphasic approach with molecular phylogeny. Plant Pathology, 2011, 60, 762-775.	2.4	77
78	Prevalence, polyphasic identification, and molecular phylogeny of dagger and needle nematodes infesting vineyards in southern Spain. European Journal of Plant Pathology, 2011, 129, 427-453.	1.7	48
79	Microbial communities associated with the root system of wild olives (Olea europaea L. subsp.) Tj ETQq1 1 0.7 Verticillium dahliae. Plant and Soil, 2011, 343, 329-345.	84314 rgB 3.7	T /Overlock 1 89
80	Purple-Pigmented Violacein-Producing Duganella spp. Inhabit the Rhizosphere of Wild and Cultivated Olives in Southern Spain. Microbial Ecology, 2011, 62, 446-459.	2.8	39
81	In Planta and Soil Quantification of <i>Fusarium oxysporum</i> f. sp. <i>ciceris</i> and Evaluation of Fusarium Wilt Resistance in Chickpea with a Newly Developed Quantitative Polymerase Chain Reaction Assay. Phytopathology, 2011, 101, 250-262.	2.2	50
82	Molecular and Pathogenic Characterization of <i>Fusarium redolens</i> , a New Causal Agent of Fusarium Yellows in Chickpea. Plant Disease, 2011, 95, 860-870.	1.4	30
83	Molecular and morphometric characterisation of Xiphinema globosum Sturhan, 1978 (Nematoda:) Tj ETQq1 1	0.784314 0.6	rgBŢ /Overloc
84	Plant-Parasitic Nematodes Attacking Olive Trees and their Management. Plant Disease, 2010, 94, 148-162.	1.4	36
85	Molecular analysis and comparative morphology to resolve a complex of cryptic Xiphinema species. Zoologica Scripta, 2010, 39, 483-498.	1.7	52
86	Molecular and morphological characterisation of Sphaeronema alni Turkina & Chizhov, 1986 (Nematoda: Sphaeronematidae) from Spain compared with a topotype population from Russia. Nematology, 2010, 12, 649-659.	0.6	7
87	Molecular variability and phylogeny of Schistonchus caprifici (Gasperrini, 1864) Cobb, 1927 (Nematoda:) Tj ET	Qq1 1 0.78	4314 rgBT /
88	Comparative morphometrics and ribosomal DNA sequence analysis of Longidorus orientalis Loof, 1983 (Nematoda: Longidoridae) from Spain and Iran. Nematology, 2010, 12, 631-640.	0.6	16
89	Description of Pratylenchus hispaniensis n. sp. from Spain and considerations on the phylogenetic relationship among selected genera in the family Pratylenchidae. Nematology, 2010, 12, 429-451.	0.6	25
90	Identification and quantification of Fusarium oxysporum in planta and soil by means of an improved specific and quantitative PCR assay. Applied Soil Ecology, 2010, 46, 372-382.	4.3	59

#	Article	IF	CITATIONS
91	First Report of Southern Blight of Pepper Caused by Sclerotium rolfsii in Southern Spain. Plant Disease, 2010, 94, 280-280.	1.4	5

Molecular characterisation of Longidorus kuiperi Brinkman, Loof & amp; Barbez, 1987 (Nematoda:) Tj ETQq0 0 0 rg $\frac{BT}{0.6}$ /Overlock 10 Tf 50 rg $\frac{BT}{12}$

93	Eutylenchus excretorius Ebsary & Eveleigh, 1981 (Nematoda: Tylodorinae) from Spain with approaches to molecular phylogeny of related genera. Nematology, 2009, 11, 343-354.	0.6	13
94	A new rootâ€knot nematode, <i>Meloidogyne silvestris</i> n. sp. (Nematoda: Meloidogynidae), parasitizing European holly in northern Spain. Plant Pathology, 2009, 58, 606-619.	2.4	12
95	Role of oospores as primary inoculum for epidemics of downy mildew caused by <i>Peronospora arborescens</i> in opium poppy crops in Spain. Plant Pathology, 2009, 58, 1092-1103.	2.4	21
96	A Nested-Polymerase Chain Reaction Protocol for Detection and Population Biology Studies of <i>Peronospora arborescens</i> , the Downy Mildew Pathogen of Opium Poppy, Using Herbarium Specimens and Asymptomatic, Fresh Plant Tissues. Phytopathology, 2009, 99, 73-81.	2.2	17
97	First Report of Root-Knot Nematode <i>Meloidogyne hispanica</i> Infecting Grapevines in Southern Spain. Plant Disease, 2009, 93, 1353-1353.	1.4	6
98	Description and molecular characterisation of Paralongidorus litoralis sp. n. and P. paramaximus Heyns, 1965 (Nematoda: Longidoridae) from Spain. Nematology, 2008, 10, 87-101.	0.6	34
99	Spatiotemporal Analysis of Spread of Infections by Verticillium dahliae Pathotypes Within a High Tree Density Olive Orchard in Southern Spain. Phytopathology, 2008, 98, 167-180.	2.2	69
100	Infection by <i>Meloidogyne artiellia</i> Does Not Break Down Resistance to Races 0, 1A, and 2 of <i>Fusarium oxysporum</i> f. sp. <i>ciceris</i> in Chickpea Genotypes. Phytopathology, 2008, 98, 709-718.	2.2	10
101	Peronospora arborescens Causes Downy Mildew Disease in Commercial Opium Poppy Crops in France. Plant Disease, 2008, 92, 834-834.	1.4	12
102	Plant-Parasitic Nematodes Attacking Chickpea and Their In Planta Interactions with Rhizobia and Phytopathogenic Fungi. Plant Disease, 2008, 92, 840-853.	1.4	33
103	Molecular Characterization of <i>Meloidogyne hispanica</i> (Nematoda, Meloidogynidae) by Phylogenetic Analysis of Genes Within the rDNA in <i>Meloidogyne</i> spp Plant Disease, 2008, 92, 1104-1110.	1.4	29
104	First Report of <i>Pectobacterium carotovorum</i> Causing Soft Rot of Opium Poppy in Spain. Plant Disease, 2008, 92, 317-317.	1.4	7
105	Morphological and molecular characterisation of a new awl nematode, Dolichodorus mediterraneus sp. n. (Nematoda: Dolichodoridae), from Spain. Nematology, 2007, 9, 189-199.	0.6	3
106	Quantitative Modeling of the Effects of Temperature and Inoculum Density of Fusarium oxysporum f. sp. ciceris Races 0 and 5 on Development of Fusarium Wilt in Chickpea Cultivars. Phytopathology, 2007, 97, 564-573.	2.2	32
107	Host-Parasite Relationships in Fall-Sown Sugar Beets Infected by the Stem and Bulb Nematode, Ditylenchus dipsaci. Plant Disease, 2007, 91, 71-79.	1.4	9
108	Phylogenetic Analysis of Downy Mildew Pathogens of Opium Poppy and PCR-Based In Planta and Seed Detection of <i>Peronospora arborescens</i> . Phytopathology, 2007, 97, 1380-1390.	2.2	54

#	Article	IF	CITATIONS
109	Plant-Parasitic Nematodes Infecting Grapevine in Southern Spain and Susceptible Reaction to Root-Knot Nematodes of Rootstocks Reported as Moderately Resistant. Plant Disease, 2007, 91, 1147-1154.	1.4	37
110	Soil properties in organic olive groves compared with that in natural areas in a mountainous landscape in southern Spain. Soil Use and Management, 2007, 23, 404-416.	4.9	55
111	Role of 2,4-Diacetylphloroglucinol-Producing FluorescentPseudomonasspp. in the Defense of Plant Roots. Plant Biology, 2007, 9, 4-20.	3.8	259
112	A New Root-Knot Nematode Parasitizing Sea Rocket from Spanish Mediterranean Coastal Dunes: Meloidogyne dunensis n. sp. (Nematoda: Meloidogynidae). Journal of Nematology, 2007, 39, 190-202.	0.9	9
113	Host Crop Affects Rhizosphere Colonization and Competitiveness of 2,4-Diacetylphloroglucinol-Producing Pseudomonas fluorescens. Phytopathology, 2006, 96, 751-762.	2.2	66
114	Temperature Response of Chickpea Cultivars to Races of Fusarium oxysporum f. sp. ciceris, Causal Agent of Fusarium Wilt. Plant Disease, 2006, 90, 365-374.	1.4	58
115	Enrichment and genotypic diversity of phlD-containing fluorescent Pseudomonas spp. in two soils after a century of wheat and flax monoculture. FEMS Microbiology Ecology, 2006, 55, 351-368.	2.7	58
116	phlD-based genetic diversity and detection of genotypes of 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens. FEMS Microbiology Ecology, 2006, 56, 64-78.	2.7	54
117	Endophytic Colonisation of Opium Poppy, Papaver somniferum, by an Entomopathogenic Beauveria bassiana Strain. Mycopathologia, 2006, 161, 323-329.	3.1	129
118	First Report of Broomrape (Orobanche crenata) Infecting Lettuce in Southern Spain. Plant Disease, 2006, 90, 1112-1112.	1.4	2
119	First Report of Meloidogyne arenaria Parasitizing Lettuce in Southern Spain. Plant Disease, 2006, 90, 975-975.	1.4	4
120	Characterization of the Cystoid Nematode Meloidoderita kirjanovae (Nemata: Sphaeronematidae) from Southern Italy. Journal of Nematology, 2006, 38, 376-82.	0.9	6
121	Pathogenicity of the root-knot nematode Meloidogyne javanica on potato. Plant Pathology, 2005, 54, 657-664.	2.4	55
122	First Report of Downy Mildew of Opium Poppy Caused by Peronospora arborescens in Spain. Plant Disease, 2005, 89, 338-338.	1.4	12
123	Influence of temperature on plant-rhizobacteria interactions related to biocontrol potential for suppression of fusarium wilt of chickpea. Plant Pathology, 2004, 53, 341-352.	2.4	68
124	Minimal changes in rhizobacterial population structure following root colonization by wild type and transgenic biocontrol strains. FEMS Microbiology Ecology, 2004, 49, 307-318.	2.7	63
125	Rhizosphere colonization of hexaploid wheat by Pseudomonas fluorescens strains Q8r1-96 and Q2-87 is cultivar-variable and associated with changes in gross root morphology. Biological Control, 2004, 30, 392-403.	3.0	40
126	Integrated Management of Fusarium Wilt of Chickpea with Sowing Date, Host Resistance, and Biological Control. Phytopathology, 2004, 94, 946-960.	2.2	92

#	Article	IF	CITATIONS
127	Interactions Between Strains of 2,4-Diacetylphloroglucinol-Producing Pseudomonas fluorescens in the Rhizosphere of Wheat. Phytopathology, 2003, 93, 982-994.	2.2	98
128	Identification of Differences in Genome Content among phID-Positive Pseudomonas fluorescens Strains by Using PCR-Based Subtractive Hybridization. Applied and Environmental Microbiology, 2002, 68, 5170-5176.	3.1	39
129	Differential Ability of Genotypes of 2,4-Diacetylphloroglucinol-Producing Pseudomonas fluorescens Strains To Colonize the Roots of Pea Plants. Applied and Environmental Microbiology, 2002, 68, 3226-3237.	3.1	146
130	Comparison of Three Methods for Monitoring Populations of Different Genotypes of 2,4-Diacetylphloroglucinol-Producing Pseudomonas fluorescens in the Rhizosphere. Phytopathology, 2002, 92, 129-137.	2.2	43
131	Effect of fusaric acid and phytoanticipins on growth of rhizobacteria andFusarium oxysporum. Canadian Journal of Microbiology, 2002, 48, 971-985.	1.7	46
132	Influence of Temperature and Inoculum Density of Fusarium oxysporum f. sp. ciceris on Suppression of Fusarium Wilt of Chickpea by Rhizosphere Bacteria. Phytopathology, 2001, 91, 807-816.	2.2	80
133	Effects of Commercial and Indigenous Microorganisms on Fusarium Wilt Development in Chickpea1. Biological Control, 1998, 13, 166-176.	3.0	84
134	Antagonistic activity of Bacteria from the chickpea rhizosphere againstFusarium Oxysporum f. sp.Ciceris. Phytoparasitica, 1997, 25, 305-318.	1.2	100
135	Xylella fastidiosa Infection Reshapes Microbial Composition and Network Associations in the Xylem of Almond Trees. Frontiers in Microbiology, 0, 13, .	3.5	10