Marija Jozanović

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6945765/publications.pdf

Version: 2024-02-01

16 papers	217 citations	9 h-index	1058476 14 g-index
16	16	16	223
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Review of characteristics and analytical methods for determination of indomethacin. Reviews in Analytical Chemistry, 2022, 41, 34-62.	3.2	6
2	A New, MWCNT-Based, Solid-State Thiabendazole-Selective Sensor. Sensors, 2022, 22, 3785.	3.8	4
3	Potentiometric Sensors for the Determination of Anionic Surfactants – A Review. Critical Reviews in Analytical Chemistry, 2021, 51, 115-137.	3.5	23
4	Direct Potentiometric Study of Cationic and Nonionic Surfactants in Disinfectants and Personal Care Products by New Surfactant Sensor Based on 1,3-Dihexadecylâ^'1H-benzo[d]imidazolâ^'3-ium. Molecules, 2021, 26, 1366.	3.8	10
5	The Influence of Plasticizers on the Response Characteristics of the Surfactant Sensor for Cationic Surfactant Determination in Disinfectants and Antiseptics. Sensors, 2021, 21, 3535.	3.8	9
6	Carnosine, Small but Mightyâ€"Prospect of Use as Functional Ingredient for Functional Food Formulation. Antioxidants, 2021, 10, 1037.	5.1	33
7	Potentiometric Surfactant Sensor Based on 1,3-Dihexadecyl-1H-benzo[d]imidazol-3-ium for Anionic Surfactants in Detergents and Household Care Products. Molecules, 2021, 26, 3627.	3.8	8
8	The novel anionic surfactant selective sensors based on newly synthesized quaternary ammonium salts as ionophores. Sensors and Actuators B: Chemical, 2021, 343, 130103.	7.8	5
9	Application of Spectrophotometric Fingerprint in Cluster Analysis for Starch Origin Determination. Food Technology and Biotechnology, 2020, 58, 5-11.	2.1	6
10	A simple and reliable new microchip electrophoresis method for fast measurements of imidazole dipeptides in meat from different animal species. Analytical and Bioanalytical Chemistry, 2018, 410, 4359-4369.	3.7	20
11	Electrochemical and UV/VIS Study of L-Histidine and Its Complexes with Cobalt and Nickel. Croatica Chemica Acta, 2018, 91, .	0.4	9
12	Determination of anionic surfactants in real samples using a low-cost and high sensitive solid contact surfactant sensor with MWCNTs as the ion-to-electron transducer. Analytical Methods, 2017, 9, 2305-2314.	2.7	13
13	A New Sensor for Determination of Anionic Surfactants in Detergent Products with Carbon Nanotubes as Solid Contact. Journal of Surfactants and Detergents, 2017, 20, 881-889.	2.1	17
14	Determination of anti-oxidative histidine dipeptides in poultry by microchip capillary electrophoresis with contactless conductivity detection. Food Chemistry, 2017, 221, 1658-1665.	8.2	24
15	Direct potentiometric determination of starch using a platinum redox sensor. Food Chemistry, 2013, 138, 9-12.	8.2	6
16	A new potentiometric sensor for the determination of α-amylase activity. Talanta, 2011, 83, 1606-1612.	5.5	24