
Ruiqi Xie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6945708/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Self-contracting oxidized starch/gelatin hydrogel for noninvasive wound closure and wound healing. Materials and Design, 2020, 194, 108916.	7.0	64
2	Self-fitting shape memory polymer foam inducing bone regeneration: A rabbit femoral defect study. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 936-945.	2.4	62
3	Selfâ€Propelling Janus Particles for Hemostasis in Perforating and Irregular Wounds with Massive Hemorrhage. Advanced Functional Materials, 2020, 30, 2004153.	14.9	62
4	A self-adapting hydrogel based on chitosan/oxidized konjac glucomannan/AgNPs for repairing irregular wounds. Biomaterials Science, 2020, 8, 1910-1922.	5.4	62
5	Protein-reduced gold nanoparticles mixed with gentamicin sulfate and loaded into konjac/gelatin sponge heal wounds and kill drug-resistant bacteria. International Journal of Biological Macromolecules, 2020, 148, 921-931.	7.5	55
6	Puff pastry-like chitosan/konjac glucomannan matrix with thrombin-occupied microporous starch particles as a composite for hemostasis. Carbohydrate Polymers, 2020, 232, 115814.	10.2	46
7	Mechanically Robust Shape Memory Polyurethane Nanocomposites for Minimally Invasive Bone Repair. ACS Applied Bio Materials, 2019, 2, 1056-1065.	4.6	44
8	Recent advances in materials for hemostatic management. Biomaterials Science, 2021, 9, 7343-7378.	5.4	40
9	High performance shape memory foams with isocyanate-modified hydroxyapatite nanoparticles for minimally invasive bone regeneration. Ceramics International, 2017, 43, 4794-4802.	4.8	32
10	Magnetically Guided Nanoworms for Precise Delivery to Enhance In Situ Production of Nitric Oxide to Combat Focal Bacterial Infection In Vivo. ACS Applied Materials & Interfaces, 2021, 13, 22225-22239.	8.0	26
11	A programmable, fast-fixing, osteo-regenerative, biomechanically robust bone screw. Acta Biomaterialia, 2020, 103, 293-305.	8.3	21
12	Biogenetic Acellular Dermal Matrix Maintaining Rich Interconnected Microchannels for Accelerated Tissue Amendment. ACS Applied Materials & Interfaces, 2021, 13, 16048-16061.	8.0	16
13	Magnetic field-mediated Janus particles with sustained driving capability for severe bleeding control in perforating and inflected wounds. Bioactive Materials, 2021, 6, 4625-4639.	15.6	14
14	Topographical Control of Preosteoblast Culture by Shape Memory Foams. Advanced Engineering Materials, 2017, 19, 1600343.	3.5	10
15	Microcluster colloidosomes for hemostat delivery into complex wounds: A platform inspired by the attack action of torpedoes. Bioactive Materials, 2022, 16, 372-387.	15.6	8
16	Dual-Driven Hemostats Featured with Puncturing Erythrocytes for Severe Bleeding in Complex Wounds. Research, 2022, 2022, .	5.7	7
17	Chestnut-like macro-acanthosphere triggered hemostasis: a featured mechanism based on puncturing red blood cells. Nanoscale, 2021, 13, 9843-9852.	5.6	6