Siddharth Suryanarayanan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6945705/publications.pdf

Version: 2024-02-01

113 papers

2,455 citations

394421 19 h-index 254184 43 g-index

113 all docs

 $\begin{array}{c} 113 \\ \\ \text{docs citations} \end{array}$

times ranked

113

2599 citing authors

#	Article	IF	CITATIONS
1	A Fast and Scalable Transmission Switching Algorithm for Boosting Resilience of Electric Grids Impacted by Extreme Weather Events. IEEE Access, 2022, 10, 57893-57901.	4.2	3
2	Combined Impact of Demand Response Aggregators and Carbon Taxation on Emissions Reduction in Electric Power Systems. IEEE Transactions on Smart Grid, 2021, 12, 1825-1827.	9.0	29
3	A Hybrid Hilbert-Huang Method for Monitoring Distorted Time-Varying Waveforms. Energies, 2021, 14, 1864.	3.1	4
4	An aggregatorâ€based resource allocation in the smart grid using an artificial neural network and sliding time window optimization. IET Smart Grid, 2021, 4, 612-622.	2,2	4
5	Incorporation of Survey-based Data into an Aggregation Algorithm for Residential Demand Response. , 2021, , .		O
6	A Computationally Improved Heuristic Algorithm for Transmission Switching Using Line Flow Thresholds for Load Shed Reduction. , 2021, , .		5
7	Simulation Studies to Quantify the Impact of Demand Side Management on Environmental Footprint. Sustainability, 2021, 13, 9504.	3.2	1
8	Dirty dishes or dirty laundry? Comparing two methods for quantifying American consumers' preferences for load management in a smart home. Energy Research and Social Science, 2021, 71, 101781.	6.4	8
9	The LSBmax algorithm for boosting resilience of electric grids post (Nâ€2) contingencies. Journal of Engineering, 2021, 2021, 807-816.	1.1	3
10	Quantifying the Impact of Solar Photovoltaic and Energy Storage Assets on the Performance of a Residential Energy Aggregator. IEEE Transactions on Sustainable Energy, 2020, 11, 405-414.	8.8	27
11	A Data-Driven Justification for Dedicated Dynamic Pricing for Residences-Based Plug-in Electric Vehicles in Wind Energy-Rich Electricity Grids. IEEE Open Access Journal of Power and Energy, 2020, 7, 51-58.	3.4	5
12	A data decomposition approach to design a dynamic pricing mechanism for residence-based plug-in electric vehicles in wind energy-rich grids. ETransportation, 2020, 4, 100062.	14.8	5
13	Monitoring LV Prosumers Operation Using Hilbert - Huang Method. , 2020, , .		2
14	Risk assessment in planning high penetrations of solar photovoltaic installations in distribution systems. International Journal of Electrical Power and Energy Systems, 2019, 104, 724-733.	5 . 5	27
15	A comprehensive cost-benefit analysis of the penetration of Smart Grid technologies in the Saudi Arabian electricity infrastructure. Utilities Policy, 2019, 60, 100933.	4.0	18
16	An Application of Machine Learning for a Smart Grid Resource Allocation Problem. , 2019, , .		6
17	Impacts of Voltage-based Grid Support Functions on Energy Production of PV Customers. , 2019, , .		5
18	Risk-adjusted Cost Ratios for Quantifying Improvements in Wind Power Forecasting. , 2019, , .		2

#	Article	IF	Citations
19	A Comparison of Multiple Methods for Short-Term Load Forecasting. , 2019, , .		1
20	A fuzzy Analytic Hierarchy Process algorithm to prioritize Smart Grid technologies for the Saudi electricity infrastructure. Sustainable Energy, Grids and Networks, 2018, 13, 122-133.	3.9	17
21	A Partially Observable Markov Decision Process Approach to Residential Home Energy Management. IEEE Transactions on Smart Grid, 2018, 9, 1271-1281.	9.0	56
22	Energy Management in Multi-Microgrid System with Community Battery Energy Storage., 2018,,.	_	5
23	An Enterprise Systems Engineering Approach to Electrification: Looking at the Bigger Picture Through Life-Cycle Analysis of Community Microgrids: A Case Study in Papua New Guinea. IEEE Electrification Magazine, 2018, 6, 18-31.	1.8	5
24	A Global Real-Time Superlab: Enabling High Penetration of Power Electronics in the Electric Grid. IEEE Power Electronics Magazine, 2018, 5, 35-44.	0.7	54
25	An application of the Analytic Hierarchy Process for prioritizing user preferences in the design of a Home Energy Management System. Sustainable Energy, Grids and Networks, 2018, 16, 196-206.	3.9	19
26	Geographically distributed real-time digital simulations using linear prediction. International Journal of Electrical Power and Energy Systems, 2017, 84, 308-317.	5.5	26
27	A multi-criteria decision analysis-based approach for dispatch of electric microgrids. International Journal of Electrical Power and Energy Systems, 2017, 88, 99-107.	5.5	17
28	Guest Editorial Special Section on Innovative Research Concepts for Power Delivery Engineering. IEEE Transactions on Power Delivery, 2017, 32, 207-208.	4.3	0
29	Electric energy management in residential areas through coordination of multiple smart homes. Renewable and Sustainable Energy Reviews, 2017, 80, 260-275.	16.4	97
30	Assessments of battery storage options for distribution expansion planning using an OpenDSS-based framework. , $2017, \ldots$		4
31	Capacity optimization of a community microgrid for rural electrification. , 2017, , .		5
32	A comparison of three parallel processing methods for a resource allocation problem in the smart grid. , 2017, , .		7
33	Steady-state analysis of the impact of temperature variations on a distribution transformer., 2017,,.		2
34	Metrics-Based Assessment of Sustainability in Demand Response. , 2017, , .		6
35	Plenary Panel: Convergence of High-Performance Computing and Communication, Smart City, and Data Sciences and Systems: Fields Helping Grand Challenges and Each Other., 2017,,.		0
36	Homeowner Preference Elicitation. , 2016, , .		1

#	Article	IF	Citations
37	Employing ARIMA models to improve wind power forecasts: A case study in ERCOT., 2016,,.		30
38	An algorithmic approach for creating diverse stochastic feeder datasets for power systems co-simulations, , $2016, , .$		6
39	Cyber-physical test platform for microgrids: Combining hardware, hardware-in-the-loop, and network-simulator-in-the-loop. , 2016 , , .		16
40	Ex Ante Cost-Benefit Analysis for optimal deregulation of electricity markets. , 2016, , .		1
41	Enabling Smart Grid Cosimulation Studies: Rapid Design and Development of the Technologies and Controls. IEEE Electrification Magazine, 2016, 4, 25-32.	1.8	7
42	An algorithmic approach to tracing closed loops in a power systems network. , 2015, , .		O
43	Bus.py: A GridLAB-D communication interface for Smart distribution Grid simulations. , 2015, , .		17
44	A Load Scheduling Algorithm for the Smart Home Using Customer Preferences and Real Time Residential Prices. IFAC-PapersOnLine, 2015, 48, 126-131.	0.9	6
45	Heuristic Optimization for an Aggregator-Based Resource Allocation in the Smart Grid. IEEE Transactions on Smart Grid, 2015, 6, 1785-1794.	9.0	89
46	A Visualization Aid for Demand Response Studies in the Smart Grid. Electricity Journal, 2015, 28, 100-111.	2.5	14
47	A multi-agent model and strategy for residential demand response coordination. , 2015, , .		10
48	Geographical Information Systems and Loop Flows in Power Systems. Power Electronics and Power Systems, 2015, , 135-153.	0.6	1
49	Steady-state modeling and simulation of a distribution feeder with distributed energy resources in a real-time digital simulation environment. , 2014 , , .		2
50	Powering Through the Storm: Microgrids Operation for More Efficient Disaster Recovery. IEEE Power and Energy Magazine, 2014, 12, 67-76.	1.6	107
51	Regression Modeling for Accommodating Unscheduled Flows in Electric Grids. IEEE Transactions on Power Systems, 2014, 29, 2569-2570.	6.5	8
52	An Energy Management System for Building Structures Using a Multi-Agent Decision-Making Control Methodology. IEEE Transactions on Industry Applications, 2013, 49, 322-330.	4.9	194
53	Electric Energy Management in the Smart Home: Perspectives on Enabling Technologies and Consumer Behavior. Proceedings of the IEEE, 2013, 101, 2397-2408.	21.3	93
54	Accommodating Unscheduled Flows in Electric Grids Using the Analytical Ridge Regression. IEEE Transactions on Power Systems, 2013, 28, 3507-3508.	6.5	11

#	Article	lF	Citations
55	A Linear Programming Methodology to Quantify the Impact of PHEVs with V2G Capabilities on Distribution Systems. , 2013 , , .		4
56	Unscheduled Flow in Deregulated Electricity Markets: Bridging the Gap between the Western Electric Power Industry and Academia. , 2013 , , .		0
57	A Case Study on the Effects of Predicted Wind Farm Power Outputs on Unscheduled Flows in Transmission Networks. , $2013, \ldots$		2
58	Data Analysis and Visualization for Electric Microgrids: A Case Study on the FortZED RDSI Microgrid. , 2013, , .		5
59	An overview of real time hardware-in-the-loop capabilities in digital simulation for electric microgrids. , 2013, , .		14
60	On the design of a survey for reconciling consumer behaviors with demand response in the smart home. , 2013, , .		5
61	A flexible and efficient multi-agent gas turbine power plant energy management system with economic and environmental constraints. Applied Energy, 2013, 101, 644-654.	10.1	17
62	An Artificial Neural Network in Short-Term Electrical Load Forecasting of a University Campus: A Case Study. Journal of Energy Resources Technology, Transactions of the ASME, 2013, 135, .	2.3	14
63	An application of a decision-making algorithm for an intelligent distribution substation. , 2013, , .		1
64	Power Electronics for Smart Distribution Grids. Green Energy and Technology, 2013, , 493-523.	0.6	0
65	An Artificial Neural Network in Short-Term Electrical Load Forecasting of a University Campus: A Case Study. , 2012, , .		1
66	A Comparison of Smart Grid Technologies and Progresses in Europe and the U.S IEEE Transactions on Industry Applications, 2012, 48, 1154-1162.	4.9	90
67	Improving Reliability of Islanded Distribution Systems With Distributed Renewable Energy Resources. IEEE Transactions on Smart Grid, 2012, 3, 2028-2038.	9.0	99
68	Dispatch in Microgrids: Lessons from the Fort Collins Renewable and Distributed Systems Integration Demonstration Project. Electricity Journal, 2012, 25, 71-83.	2.5	8
69	A Framework for Co-simulation of Al Tools with Power Systems Analysis Software. , 2012, , .		30
70	A proposed framework for heuristic approaches to resource allocation in the emerging smart grid. , 2012, , .		4
71	An evolutionary algorithm and acceleration approach for topological design of distributed resource islands. , 2011, , .		3
72	Smart-grid technologies and progress in Europe and the USA. , 2011, , .		35

#	Article	IF	Citations
7 3	Smart Grid Initiative. IEEE Industry Applications Magazine, 2011, 17, 27-35.	0.4	40
74	Some Characteristics of Emerging Distribution Systems Considering the Smart Grid Initiative. Electricity Journal, 2010, 23, 64-75.	2.5	51
75	Achieving the Smart Grid through customer-driven microgrids supported by energy storage. , 2010, , .		37
76	Grid modernization efforts in the USA and Brazil - some common lessons based on the Smart Grid Initiative. , 2010, , .		9
77	System analytics for smart microgrids. , 2010, , .		9
78	A framework for energy management in customer-driven microgrids. , 2010, , .		7
79	A conceptual framework of a hierarchically networked agent-based microgrid architecture. , 2010, , .		20
80	An Energy Management System for Building Structures Using a Multi-Agent Decision-Making Control Methodology. , $2010, \ldots$		30
81	Some elements of design and operation of a smart distribution system. , 2010, , .		12
82	A conceptual scheme for cyber-physical systems based energy management in building structures. , 2010, , .		19
83	Enabling technologies for the customer-driven microgrid. , 2009, , .		19
84	A Multifunctional Single-Phase Voltage Source Inverter in Perspective of the Smart Grid Initiative. , 2009, , .		20
85	A Heuristic Technique for Scheduling a Customer-Driven Residential Distributed Energy Resource Installation., 2009,,.		12
86	Adaptive Transfer Function Estimation of a Notional High-Temperature Superconducting Propulsion Motor. IEEE Transactions on Industry Applications, 2009, 45, 651-658.	4.9	6
87	Dynamic Simulation-Based Analysis of a New Load Shedding Scheme for a Notional Destroyer-Class Shipboard Power System. IEEE Transactions on Industry Applications, 2009, 45, 1166-1174.	4.9	17
88	A survey seeking a definition of a smart distribution system. , 2009, , .		33
89	Simulation based considerations in placement of capacitors near a dynamic voltage restorer. Simulation Modelling Practice and Theory, 2008, 16, 1430-1437.	3.8	2
90	A review of the application of analytic hierarchy process to the planning and operation of electric power microgrids. , 2008, , .		17

#	Article	IF	CITATIONS
91	Modification to Contribution Factor Formula for Unscheduled Flows. IEEE Transactions on Power Systems, 2008, 23, 809-810.	6.5	13
92	Techniques for accommodating unscheduled flows in electricity networks and markets., 2008,,.		8
93	A Controllable Test Bed to Assess Induction Motor Thermal Behavior under Time-varying Voltage Waveform Distortions. , 2007, , .		1
94	Voltage Sensitivity to Capacitor Switching on an Existing Fixed Speed Induction Generator Wind Farm. IEEE Power Engineering Society General Meeting, 2007, , .	0.0	4
95	Sequential Experimental Design Based Modeling of a Notional All-Electric Ship AC/DC Conversion System for Sensitivity and Uncertainty Analysis. , 2007, , .		1
96	Research Perspectives on High-Fidelity Modeling, Simulation and Hardware-in-the-Loop for Electric Grid Infrastructure Hardening. IEEE Power Engineering Society General Meeting, 2007, , .	0.0	7
97	An Improved Hilbert–Huang Method for Analysis of Time-Varying Waveforms in Power Quality. IEEE Transactions on Power Systems, 2007, 22, 1843-1850.	6.5	194
98	Dynamic Simulation Based Analysis of a New Load Shedding Scheme for a Notional Destroyer Class Shipboard Power System., 2007,,.		7
99	Application of a Time-Frequency Algorithm for Adaptive Estimation of Transfer Function of a Notional High-Temperature Superconducting Motor., 2007,,.		0
100	Investigating the Impact of Pulsed Power Charging Demands on Shipboard Power Quality., 2007,,.		49
101	Fault Current Contribution From Synchronous Machine and Inverter Based Distributed Generators. IEEE Transactions on Power Delivery, 2007, 22, 634-641.	4.3	239
102	Two Techniques to Enhance Empirical Mode Decomposition for Power Quality Applications. IEEE Power Engineering Society General Meeting, 2007, , .	0.0	39
103	Some Techniques for the Analysis and Visualization of Time-varying Waveform Distortions. , 2006, , .		10
104	Energy scavenging modes from renewable sources for unmanned surface vehicles: a survey of concepts., 2006, 6230, 878.		1
105	Considerations for Implementing Tag Schedules in Transmission Circuits. IEEE Transactions on Power Systems, 2005, 20, 523-524.	6.5	7
106	State Estimation in Power Engineering Using the Huber Robust Regression Technique. IEEE Transactions on Power Systems, 2005, 20, 1183-1184.	6.5	13
107	An Estimation Technique to Assign Contribution Factors for Loop Flows in an Interconnected Power System. Electric Power Components and Systems, 2004, 32, 813-826.	1.8	8
108	Estimation of Unscheduled Flows and Contribution Factors Based on <tex>\$rm L_rm p\$</tex> Norms. IEEE Transactions on Power Systems, 2004, 19, 1245-1246.	6.5	16

#	ARTICLE	IF	CITATIONS
109	An Online Portal for Collaborative Learning and Teaching for Power Engineering Education. IEEE Transactions on Power Systems, 2004, 19, 73-80.	6.5	12
110	The application of analytical hierarchy process to analyze the impact of hidden failures in special protection schemes. Electric Power Systems Research, 2003, 67, 191-196.	3.6	25
111	A conceptual power quality monitoring technique based on multi-agent systems. , 0, , .		16
112	Enhanced Empirical Mode Decomposition Applied to Waveform Distortions., 0,, 233-251.		0
113	Reducing carbon dioxide emissions from electricity sector using demand side management. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 0, , 1-21.	2.3	5