Granozzi Gaetano

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6945662/granozzi-gaetano-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

391
papers

9,720
citations

44
papers

10,812
ext. papers

9,720
h-index

5.5
avg, IF

6.29
L-index

#	Paper	IF	Citations
391	The Effect of the 3D Nanoarchitecture and Ni-Promotion on the Hydrogen Evolution Reaction in MoS /Reduced GO Aerogel Hybrid Microspheres Produced by a Simple One-Pot Electrospraying Procedure <i>Small</i> , 2022 , e2105694	11	1
390	Highly Photostable Carbon Dots from Citric Acid for Bioimaging Materials, 2022, 15,	3.5	1
389	Atom-by-atom identification of catalytic active sites in operando conditions by quantitative noise detection. <i>Joule</i> , 2022 , 6, 617-635	27.8	6
388	Improving the Photocatalytic Activity of Mesoporous Titania Films through the Formation of WS/TiO Nano-Heterostructures <i>Nanomaterials</i> , 2022 , 12,	5.4	3
387	Toward sustainable and effective HER electrocatalysts: strategies for the basal plane site activation of transition metal dichalcogenides. <i>Current Opinion in Electrochemistry</i> , 2022 , 101025	7.2	1
386	How do H oxidation molecular catalysts assemble onto carbon nanotube electrodes? A crosstalk between electrochemical and multi-physical characterization techniques <i>Chemical Science</i> , 2021 , 12, 15916-15927	9.4	0
385	Hydrophobic Thin Films from Sol-Gel Processing: A Critical Review. <i>Materials</i> , 2021 , 14,	3.5	2
384	Citric Acid Derived Carbon Dots, the Challenge of Understanding the Synthesis-Structure Relationship. <i>Journal of Carbon Research</i> , 2021 , 7, 2	3.3	9
383	Operando visualization of the hydrogen evolution reaction with atomic-scale precision at different metalgraphene interfaces. <i>Nature Catalysis</i> , 2021 , 4, 850-859	36.5	19
382	Strain Induced Phase Transition of WS2 by Local Dewetting of Au/Mica Film upon Annealing. <i>Surfaces</i> , 2021 , 4, 1-8	2.9	3
381	Highly Graphitized Fe-N-C Electrocatalysts Prepared from Chitosan Hydrogel Frameworks. <i>Catalysts</i> , 2021 , 11, 390	4	8
380	Hybrid MXene/reduced graphene oxide aerogel microspheres for hydrogen evolution reaction. <i>Jonics</i> , 2021 , 27, 3099-3108	2.7	5
379	Boron Nitride-Titania Mesoporous Film Heterostructures. <i>Langmuir</i> , 2021 , 37, 5348-5355	4	5
378	Hybridization of Molecular and Graphene Materials for CO Photocatalytic Reduction with Selectivity Control. <i>Journal of the American Chemical Society</i> , 2021 , 143, 8414-8425	16.4	22
377	Fluorescent carbon dots in solid-state: From nanostructures to functional devices. <i>Progress in Solid State Chemistry</i> , 2021 , 62, 100295	8	23
376	Hydroxylated boron nitride materials: from structures to functional applications. <i>Journal of Materials Science</i> , 2021 , 56, 4053-4079	4.3	19
375	Interfacial chemistry and electroactivity of black phosphorus decorated with transition metals. <i>Inorganic Chemistry Frontiers</i> , 2021 , 8, 684-692	6.8	3

(2020-2021)

374	Polymerization-Driven Photoluminescence in Alkanolamine-Based C-Dots. <i>Chemistry - A European Journal</i> , 2021 , 27, 2543-2550	4.8	5
373	Multimodal hybrid 2D networks via the thiol-epoxide reaction on 1T/2H MoS2 polytypes. <i>Materials Chemistry Frontiers</i> , 2021 , 5, 3470-3479	7.8	
372	Electrocatalytic Site Activity Enhancement via Orbital Overlap in A2MnRuO7 (A = Dy3+, Ho3+, and Er3+) Pyrochlore Nanostructures. <i>ACS Applied Energy Materials</i> , 2021 , 4, 176-185	6.1	3
371	2D Boron Nitride Heterostructures: Recent Advances and Future Challenges. <i>Small Structures</i> , 2021 , 2, 2100068	8.7	11
370	Effects of the induced micro- and meso-porosity on the single site density and turn over frequency of Fe-N-C carbon electrodes for the oxygen reduction reaction. <i>Applied Catalysis B: Environmental</i> , 2021 , 291, 120068	21.8	26
369	Selective and scaled-up continuous flow synthesis of manganese oxide nanocatalysts for single electron transfer reactions. <i>Chemical Engineering Journal</i> , 2021 , 417, 129063	14.7	3
368	Sulfur Doping versus Hierarchical Pore Structure: The Dominating Effect on the Fe-N-C Site Density, Activity, and Selectivity in Oxygen Reduction Reaction Electrocatalysis. <i>ACS Applied Materials & Interfaces</i> , 2021 , 13, 42693-42705	9.5	7
367	Thermal Induced Polymerization of l-Lysine forms Branched Particles with Blue Fluorescence. <i>Macromolecular Chemistry and Physics</i> , 2021 , 222, 2100242	2.6	2
366	Preparation and electronic structure of the WSe2/graphene/NiSex/Ni(111) heterostructure. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2021 , 39, 052201	2.9	
365	Engineering UV-emitting defects in h-BN nanodots by a top-down route. <i>Applied Surface Science</i> , 2021 , 567, 150727	6.7	1
364	Fluorescence-based selective nitrite ion sensing by amino-capped carbon dots. <i>Environmental Nanotechnology, Monitoring and Management</i> , 2021 , 16, 100573	3.3	1
363	NiONi/CNT as an Efficient Hydrogen Electrode Catalyst for a Unitized Regenerative Alkaline Microfluidic Cell. <i>ACS Applied Energy Materials</i> , 2020 , 3, 4746-4755	6.1	7
362	Tuning on and off chemical- and photo-activity of exfoliated MoSe2 nanosheets through morphologically selective BoftDovalent functionalization with porphyrins. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 11019-11030	13	5
361	Fulleropyrrolidine-functionalized ceria nanoparticles as a tethered dual nanosystem with improved antioxidant properties. <i>Nanoscale Advances</i> , 2020 , 2, 2387-2396	5.1	4
360	Anomalous Optical Properties of Citrazinic Acid under Extreme pH Conditions. ACS Omega, 2020, 5, 109	58910	964
359	Carbon-based antiviral nanomaterials: graphene, C-dots, and fullerenes. A perspective. <i>Chemical Science</i> , 2020 , 11, 6606-6622	9.4	95
358	Establishing reactivity descriptors for platinum group metal (PGM)-free FeINC catalysts for PEM fuel cells. <i>Energy and Environmental Science</i> , 2020 , 13, 2480-2500	35.4	100
357	Copper Vanadate Nanobelts as Anodes for Photoelectrochemical Water Splitting: Influence of CoO Overlayers on Functional Performances. <i>ACS Applied Materials & District Action</i> , 12, 31448-31458	9.5	10

356	Stable, Active, and Methanol-Tolerant PGM-Free Surfaces in an Acidic Medium: Electron Tunneling at Play in Pt/FeNC Hybrid Catalysts for Direct Methanol Fuel Cell Cathodes. <i>ACS Catalysis</i> , 2020 , 10, 747	75 -7 48	5 ¹⁵
355	Integrating sol-gel and carbon dots chemistry for the fabrication of fluorescent hybrid organic-inorganic films. <i>Scientific Reports</i> , 2020 , 10, 4770	4.9	23
354	In Situ Study of Graphene Oxide Quantum Dot-MoSx Nanohybrids as Hydrogen Evolution Catalysts. <i>Surfaces</i> , 2020 , 3, 225-236	2.9	1
353	Understanding solgel transition through a picture. A short tutorial. <i>Journal of Sol-Gel Science and Technology</i> , 2020 , 94, 544-550	2.3	8
352	Defect-assisted photoluminescence in hexagonal boron nitride nanosheets. 2D Materials, 2020, 7, 0450	123 ,9	8
351	Alkaline hydrogen electrode and oxygen reduction reaction on PtxNi nanoalloys. <i>Journal of Electroanalytical Chemistry</i> , 2020 , 857, 113449	4.1	10
350	Noncovalent Integration of a Bioinspired Ni Catalyst to Graphene Acid for Reversible Electrocatalytic Hydrogen Oxidation. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 5805-5811	9.5	20
349	Modulating the Optical Properties of Citrazinic Acid through the Monomer-to-Dimer Transformation. <i>Journal of Physical Chemistry A</i> , 2020 , 124, 197-203	2.8	13
348	Porphyrin bi-layer formation induced by a surface confined reduction on an iodine-modified Au(100) electrode surface. <i>Electrochimica Acta</i> , 2020 , 360, 137026	6.7	3
347	Upcycling of polyurethane into iron-nitrogen-carbon electrocatalysts active for oxygen reduction reaction. <i>Electrochimica Acta</i> , 2020 , 362, 137200	6.7	16
346	Hybrid Transition Metal Dichalcogenide/Graphene Microspheres for Hydrogen Evolution Reaction. <i>Nanomaterials</i> , 2020 , 10,	5.4	7
345	A DVD-MoS/AgS/Ag Nanocomposite Thiol-Conjugated with Porphyrins for an Enhanced Light-Mediated Hydrogen Evolution Reaction. <i>Nanomaterials</i> , 2020 , 10,	5.4	1
344	One-pot synthesis of MoS2(1½)Se2x on N-doped reduced graphene oxide: tailoring chemical and structural properties for photoenhanced hydrogen evolution reaction. <i>Nanoscale Advances</i> , 2020 , 2, 48	3 ō :484	10 ¹
343	Chitosan-Derived Nitrogen-Doped Carbon Electrocatalyst for a Sustainable Upgrade of Oxygen Reduction to Hydrogen Peroxide in UV-Assisted Electro-Fenton Water Treatment. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 14425-14440	8.3	32
342	Reversible Aggregation of Molecular-Like Fluorophores Driven by Extreme pH in Carbon Dots. <i>Materials</i> , 2020 , 13,	3.5	5
341	Boron oxynitride two-colour fluorescent dots and their incorporation in a hybrid organic-inorganic film. <i>Journal of Colloid and Interface Science</i> , 2020 , 560, 398-406	9.3	15
340	Combined high degree of carboxylation and electronic conduction in graphene acid sets new limits for metal free catalysis in alcohol oxidation. <i>Chemical Science</i> , 2019 , 10, 9438-9445	9.4	13
339	CeOx/TiO2 (Rutile) Nanocomposites for the Low-Temperature Dehydrogenation of Ethanol to Acetaldehyde: A Diffuse Reflectance Infrared Fourier Transform SpectroscopyMass Spectrometry Study. ACS Applied Nano Materials, 2019, 2, 3434-3443	5.6	5

(2018-2019)

338	Reversible adsorption of oxygen as superoxide ion on cerium doped zirconium titanate. <i>Applied Catalysis A: General</i> , 2019 , 580, 140-148	5.1	7
337	DEMS studies of the ethanol electro-oxidation on TiOC supported Pt catalysts Support effects for higher CO2 efficiency. <i>Electrochimica Acta</i> , 2019 , 304, 80-86	6.7	10
336	The mechanism of concentric HfO2/Co3O4/TiO2 nanotubes investigated by intensity modulated photocurrent spectroscopy (IMPS) and electrochemical impedance spectroscopy (EIS) for photoelectrochemical activity. <i>Nano Energy</i> , 2019 , 65, 104020	17.1	17
335	Palladium nanoparticles supported on graphene acid: a stable and eco-friendly bifunctional CII homo- and cross-coupling catalyst. <i>Green Chemistry</i> , 2019 , 21, 5238-5247	10	23
334	Carbon Dots from Citric Acid and its Intermediates Formed by Thermal Decomposition. <i>Chemistry - A European Journal</i> , 2019 , 25, 11963-11974	4.8	52
333	From 2-D to 0-D Boron Nitride Materials, The Next Challenge. <i>Materials</i> , 2019 , 12,	3.5	18
332	Effect of Ni Doping on the MoS2 Structure and Its Hydrogen Evolution Activity in Acid and Alkaline Electrolytes. <i>Surfaces</i> , 2019 , 2, 531-545	2.9	19
331	Ethanol aerobic and anaerobic oxidation with FeVO4 and V2O5 catalysts. <i>Applied Catalysis A: General</i> , 2019 , 570, 139-147	5.1	10
330	Arene CH insertion catalyzed by ferrocene covalently heterogenized on graphene acid. <i>Carbon</i> , 2019 , 143, 318-328	10.4	17
329	Effect of Ba Content on the Activity of La Ba MnO Towards the Oxygen Reduction Reaction. <i>ChemElectroChem</i> , 2018 , 5, 1922-1927	4.3	7
328	Sol-Gel Chemistry for Carbon Dots. <i>Chemical Record</i> , 2018 , 18, 1192-1202	6.6	16
327	Density Functional Theory (DFT) and Experimental Evidences of MetalBupport Interaction in Platinum Nanoparticles Supported on Nitrogen- and Sulfur-Doped Mesoporous Carbons: Synthesis, Activity, and Stability. <i>ACS Catalysis</i> , 2018 , 8, 1122-1137	13.1	57
326	Enhancing the Oxygen Electroreduction Activity through Electron Tunnelling: CoOx Ultrathin Films on Pd(100). <i>ACS Catalysis</i> , 2018 , 8, 2343-2352	13.1	28
325	A Combined Electrochemical-Microfluidic Strategy for the Microscale-Sized Selective Modification of Transparent Conductive Oxides. <i>Advanced Materials Interfaces</i> , 2018 , 5, 1701222	4.6	1
324	Highly Efficient MoS2/Ag2S/Ag Photoelectrocatalyst Obtained from a Recycled DVD Surface. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 7818-7825	8.3	25
323	Insights into the durability of CoHe spinel oxygen evolution electrocatalysts via operando studies of the catalyst structure. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 7034-7041	13	35
322	Welcome to Surfaces New Open Access Journal for an Interdisciplinary Scientific Community. <i>Surfaces</i> , 2018 , 1, 1-2	2.9	
321	AMnO (A = Sr, La, Ca, Y) Perovskite Oxides as Oxygen Reduction Electrocatalysts. <i>Topics in Catalysis</i> , 2018 , 61, 154-161	2.3	27

320 Graphene and Carbon Dots in Mesoporous Materials **2018**, 2339-2368

319	Molybdenum Doping Augments Platinum-Copper Oxygen Reduction Electrocatalyst. <i>ChemSusChem</i> , 2018 , 11, 193-201	8.3	23
318	Graphene Oxide/Iron Oxide Nanocomposites for Water Remediation. <i>ACS Applied Nano Materials</i> , 2018 , 1, 6724-6732	5.6	34
317	Potential Driven Non-Reactive Phase Transitions of Ordered Porphyrin Molecules on Iodine-Modified Au(100): An Electrochemical Scanning Tunneling Microscopy (EC-STM) Study. <i>Surfaces</i> , 2018 , 1, 12-28	2.9	5
316	Surface Engineering of Chemically Exfoliated MoS2 in a C lick low To Generate Versatile Multifunctional Transition Metal Dichalcogenides-Based Platforms. <i>Chemistry of Materials</i> , 2018 , 30, 8257-8269	9.6	19
315	Monolayer doping of germanium by phosphorus-containing molecules. <i>Nanotechnology</i> , 2018 , 29, 46570	03.4	10
314	Reliability of Blue-Emitting Eu-Doped Phosphors for Laser-Lighting Applications. <i>Materials</i> , 2018 , 11,	3.5	1
313	Visible Light Driven Photoanodes for Water Oxidation Based on Novel r-GO/ECuVD/TiOI Nanorods Composites. <i>Nanomaterials</i> , 2018 , 8,	5.4	15
312	Mean Intrinsic Activity of Single Mn Sites at LaMnO3 Nanoparticles Towards the Oxygen Reduction Reaction. <i>ChemElectroChem</i> , 2018 , 5, 3044-3051	4.3	15
311	Indium selenide: an insight into electronic band structure and surface excitations. <i>Scientific Reports</i> , 2017 , 7, 3445	4.9	42
310	Substrate Grain-Dependent Chemistry of Carburized Planar Anodic TiO on Polycrystalline Ti. <i>ACS Omega</i> , 2017 , 2, 631-640	3.9	6
309	Effect of Air-Aging on the Electrochemical Characteristics of TiOxCy Films for Electrocatalysis Applications. <i>ChemElectroChem</i> , 2017 , 4, 3100-3109	4.3	1
308	Support Interaction Effect of Platinum Nanoparticles on Non-, Y-, Ce-Doped Anatase and Its Implication on the ORR in Acid and Alkaline Media. <i>ChemElectroChem</i> , 2017 , 4, 3264-3275	4.3	17
307	Design of Carbon Dots Photoluminescence through Organo-Functional Silane Grafting for Solid-State Emitting Devices. <i>Scientific Reports</i> , 2017 , 7, 5469	4.9	48
306	Hybrid Organic/Inorganic Perovskite-Polymer Nanocomposites: Toward the Enhancement of Structural and Electrical Properties. <i>Journal of Physical Chemistry Letters</i> , 2017 , 8, 5981-5986	6.4	15
305	Ag-Vanadates/GO Nanocomposites by Aerosol-Assisted Spray Pyrolysis: Preparation and Structural and Electrochemical Characterization of a Versatile Material. <i>ACS Omega</i> , 2017 , 2, 2792-2802	3.9	10
304	Ferrates for water remediation. Reviews in Environmental Science and Biotechnology, 2017, 16, 15-35	13.9	13
303	A multi-technique comparison of the electronic properties of pristine and nitrogen-doped polycrystalline SnO2. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 22617-27	3.6	7

302	Oxygen reduction reaction at LaxCa1\(\text{M} MnO3 \) nanostructures: interplay between A-site segregation and B-site valency. <i>Catalysis Science and Technology</i> , 2016 , 6, 7231-7238	5.5	53	
301	A synchrotron-based spectroscopic study of the electronic structure of N-doped HOPG and PdY/N-doped HOPG. <i>Surface Science</i> , 2016 , 646, 132-139	1.8	12	
300	An easy and cheap chemical route using a MOF precursor to prepare Pdtu electrocatalyst for efficient energy conversion cathodes. <i>Journal of Catalysis</i> , 2016 , 338, 135-142	7.3	24	
299	Chemical and Electrochemical Stability of Nitrogen and Sulphur Doped Mesoporous Carbons. <i>Electrochimica Acta</i> , 2016 , 197, 251-262	6.7	42	
298	Cu2O/TiO2 heterostructures on a DVD as easy&cheap photoelectrochemical sensors. <i>Thin Solid Films</i> , 2016 , 603, 193-201	2.2	10	
297	Electrochemical Behavior of TiO(x)C(y) as Catalyst Support for Direct Ethanol Fuel Cells at Intermediate Temperature: From Planar Systems to Powders. <i>ACS Applied Materials & Description of the Interfaces</i> , 2016 , 8, 716-25	9.5	27	
296	Towards an improved process for hydrogen production: the chemical-loop reforming of ethanol. <i>Green Chemistry</i> , 2016 , 18, 1038-1050	10	27	
295	Graphene and Carbon Dots in Mesoporous Materials 2016 , 1-30			
294	Combined Photoemission Spectroscopy and Electrochemical Study of a Mixture of (Oxy)carbides as Potential Innovative Supports and Electrocatalysts. <i>ACS Applied Materials & ACS ACS APPLIED & ACS ACS APPLIED & ACS ACS ACS ACS ACS ACS ACS ACS ACS ACS</i>	18 ⁵ 27	4	
293	One step forward to a scalable synthesis of platinumultrium alloy nanoparticles on mesoporous carbon for the oxygen reduction reaction. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 12232-12240	13	48	
292	VO /V O :Ag Nanostructures on a DVD as Photoelectrochemical Sensors. <i>ChemPlusChem</i> , 2016 , 81, 391-3	32.8	9	
291	Fabrication of Ti substrate grain dependent C/TiO2 composites through carbothermal treatment of anodic TiO2. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 9220-31	3.6	5	
290	Unraveling the Multiple Effects Originating the Increased Oxidative Photoactivity of {001}-Facet Enriched Anatase TiO2. <i>ACS Applied Materials & Enriched Anatase TiO2</i> . <i>ACS Applied Materials & Enriched Anatase TiO2</i> .	9.5	35	
289	Preparation of high-porosity TiO x C y powders from a single templating carbon source. <i>Ceramics International</i> , 2016 , 42, 7690-7696	5.1	1	
288	A highly efficient and stable oxygen reduction reaction on Pt/CeOx/C electrocatalyst obtained via a sacrificial precursor based on a metal-organic framework. <i>Applied Catalysis B: Environmental</i> , 2016 , 189, 39-50	21.8	53	
287	Unveiling the Mechanisms Leading to H2 Production Promoted by Water Decomposition on Epitaxial Graphene at Room Temperature. <i>ACS Nano</i> , 2016 , 10, 4543-9	16.7	56	
286	Graphene and carbon nanodots in mesoporous materials: an interactive platform for functional applications. <i>Nanoscale</i> , 2015 , 7, 12759-72	7.7	50	
285	New Strategy for the Growth of Complex Heterostructures Based on Different 2D Materials. <i>Chemistry of Materials</i> , 2015 , 27, 4105-4113	9.6	28	

284	Electronic interaction between platinum nanoparticles and nitrogen-doped reduced graphene oxide: effect on the oxygen reduction reaction. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 11891-11904	13	108
283	Thermally Induced Strains on the Catalytic Activity and Stability of PtM2O3/C (M=Y or Gd) Catalysts towards Oxygen Reduction Reaction. <i>ChemCatChem</i> , 2015 , 7, 1573-1582	5.2	19
282	Fast One-Pot Synthesis of MoS2/Crumpled Graphene p-n Nanonjunctions for Enhanced Photoelectrochemical Hydrogen Production. <i>ACS Applied Materials & Description (Materials & Description of Control of</i>	9.5	57
281	Nitrogen and sulfur doped mesoporous carbon as metal-free electrocatalysts for the in situ production of hydrogen peroxide. <i>Carbon</i> , 2015 , 95, 949-963	10.4	188
280	Comparison between the Oxygen Reduction Reaction Activity of Pd5Ce and Pt5Ce: The Importance of Crystal Structure. <i>ACS Catalysis</i> , 2015 , 5, 6032-6040	13.1	18
279	Laser generation of iron-doped silver nanotruffles with magnetic and plasmonic properties. <i>Nano Research</i> , 2015 , 8, 4007-4023	10	49
278	Metal-support interaction in platinum and palladium nanoparticles loaded on nitrogen-doped mesoporous carbon for oxygen reduction reaction. <i>ACS Applied Materials & District Research</i> , 7, 117	o ² 9 ⁵	129
277	The nature of the Fe-graphene interface at the nanometer level. <i>Nanoscale</i> , 2015 , 7, 2450-60	7.7	33
276	The dynamics of Fe intercalation on pure and nitrogen doped graphene grown on Pt(111) probed by CO adsorption. <i>Surface Science</i> , 2015 , 634, 49-56	1.8	6
275	Single and Multiple Doping in Graphene Quantum Dots: Unraveling the Origin of Selectivity in the Oxygen Reduction Reaction. <i>ACS Catalysis</i> , 2015 , 5, 129-144	13.1	142
274	In-Situ Carbon Doping of TiO2 Nanotubes Via Anodization in Graphene Oxide Quantum Dot Containing Electrolyte and Carburization to TiOxCy Nanotubes. <i>Advanced Materials Interfaces</i> , 2015 , 2, 1400462	4.6	20
273	Multiple doping of graphene oxide foams and quantum dots: new switchable systems for oxygen reduction and water remediation. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 14334-14347	13	51
272	Characterization of TiO2thin films in the EUV and soft X-ray region 2015,		1
271	Polyvinyl alcohol electrospun nanofibers containing Ag nanoparticles used as sensors for the detection of biogenic amines. <i>Nanotechnology</i> , 2015 , 26, 075501	3.4	39
270	Energy Transfer Induced by Carbon Quantum Dots in Porous Zinc Oxide Nanocomposite Films. Journal of Physical Chemistry C, 2015 , 119, 2837-2843	3.8	34
269	Vanadium oxide nanostructures on another oxide: The viewpoint from model catalysts studies. <i>Coordination Chemistry Reviews</i> , 2015 , 301-302, 106-122	23.2	43
268	Yttrium oxide/gadolinium oxide-modified platinum nanoparticles as cathodes for the oxygen reduction reaction. <i>ChemPhysChem</i> , 2014 , 15, 2136-44	3.2	39
267	Electrocatalysis at palladium nanoparticles: Effect of the support nitrogen doping on the catalytic activation of carbonhalogen bond. <i>Applied Catalysis B: Environmental</i> , 2014 , 144, 300-307	21.8	44

(2014-2014)

266	TiO2/graphene nanocomposites from the direct reduction of graphene oxide by metal evaporation. <i>Carbon</i> , 2014 , 68, 319-329	10.4	28
265	Photocatalytic Activity vs Structural Features of Titanium Dioxide Materials Singly Doped or Codoped with Fluorine and Boron. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 25579-25589	3.8	16
264	TiO2@CeOx core-shell nanoparticles as artificial enzymes with peroxidase-like activity. <i>ACS Applied Materials & Amp; Interfaces</i> , 2014 , 6, 20130-6	9.5	77
263	Fluorine- and Niobium-Doped TiO2: Chemical and Spectroscopic Properties of Polycrystalline n-Type-Doped Anatase. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 8462-8473	3.8	56
262	Core-shell TiO2@C: towards alternative supports as replacement for high surface area carbon for PEMFC catalysts. <i>Electrochimica Acta</i> , 2014 , 139, 21-28	6.7	36
261	Pd Nanoparticles deposited on nitrogen-doped HOPG: New Insights into the Pd-catalyzed Oxygen Reduction Reaction. <i>Electrochimica Acta</i> , 2014 , 141, 89-101	6.7	39
260	Zr2O3 Nanostripes on TiO2(110) Prepared by UHV Chemical Vapor Deposition. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 8026-8033	3.8	4
259	Carbothermal Transformation of TiO2 into TiOxCy in UHV: Tracking Intrinsic Chemical Stabilities. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 22601-22610	3.8	26
258	Experimental and Theoretical Scanning Tunneling Spectroscopy Analysis of an Ultrathin Titania Film and Adsorbed Au Nanoparticles. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 14640-14646	3.8	1
257	Silver nanoprism arrays coupled to functional hybrid films for localized surface plasmon resonance-based detection of aromatic hydrocarbons. <i>ACS Applied Materials & amp; Interfaces</i> , 2014 , 6, 7773-81	9.5	28
256	Smart tailoring of the surface chemistry in GPTMS hybrid organicIhorganic films. <i>New Journal of Chemistry</i> , 2014 , 38, 1635-1640	3.6	19
255	From Vanadia Nanoclusters to Ultrathin Films on TiO2(110): Evolution of the Yield and Selectivity in the Ethanol Oxidation Reaction. <i>ACS Catalysis</i> , 2014 , 4, 3715-3723	13.1	22
254	Synthesis of luminescent 3D microstructures formed by carbon quantum dots and their self-assembly properties. <i>Chemical Communications</i> , 2014 , 50, 6592-5	5.8	39
253	Shaping graphene oxide by electrochemistry: From foams to self-assembled molecular materials. <i>Carbon</i> , 2014 , 77, 405-415	10.4	26
252	Electrochemical activation of carbonflalogen bonds: Electrocatalysis at silver/copper nanoparticles. <i>Applied Catalysis B: Environmental</i> , 2014 , 158-159, 286-295	21.8	34
251	Ultrathin Oxide Films 2014 , 585-640		
250	Optoelectrochemical biorecognition by optically transparent highly conductive graphene-modified fluorine-doped tin oxide substrates. <i>ACS Applied Materials & District Action Section</i> , 10, 22769-77	9.5	15
249	Electrochemical Activation of CarbonHalogen Bonds: Electrocatalysis at Palladium © opper Nanoparticles. <i>ChemElectroChem</i> , 2014 , 1, 1370-1381	4.3	18

248	Xylene sensing properties of aryl-bridged polysilsesquioxane thin films coupled to gold nanoparticles. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 4252	7.1	21
247	From novel PtSn/Pt(110) surface alloys to SnOx/Pt(110) nano-oxides. Surface Science, 2013, 615, 103-10	9 .8	5
246	Atomic structure and special reactivity toward methanol oxidation of vanadia nanoclusters on TiO2(110). <i>Journal of the American Chemical Society</i> , 2013 , 135, 17331-8	16.4	35
245	Green synthesis and electrophoretic deposition of Ag nanoparticles on SiOI/Si(100). <i>Nanotechnology</i> , 2013 , 24, 345501	3.4	4
244	Second generation graphene: Opportunities and challenges for surface science. <i>Surface Science</i> , 2013 , 609, 1-5	1.8	47
243	Combining top-down and bottom-up routes for fabrication of mesoporous titania films containing ceria nanoparticles for free radical scavenging. <i>ACS Applied Materials & Discounty (Materials & Discounty)</i> , 5, 3168-75	9.5	18
242	Palladium nanoparticles supported on nitrogen-doped HOPG: a surface science and electrochemical study. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 2923-31	3.6	38
241	Enhanced sensitivity azimuthally controlled grating-coupled surface plasmon resonance applied to the calibration of thiol-poly(ethylene oxide) grafting. <i>Sensors and Actuators B: Chemical</i> , 2013 , 181, 559-	-86€ -56€	7
240	Electrochemical behavior of N and Ar implanted highly oriented pyrolytic graphite substrates and activity toward oxygen reduction reaction. <i>Electrochimica Acta</i> , 2013 , 88, 477-487	6.7	47
239	Microscopic View on a Chemical Vapor Deposition Route to Boron-Doped Graphene Nanostructures. <i>Chemistry of Materials</i> , 2013 , 25, 1490-1495	9.6	112
238	Searching for the Formation of TiB Bonds in B-Doped TiO2Rutile. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 13163-13172	3.8	21
237	Structure and thermal stability of fully oxidized TiO2/Pt(111) polymorphs. <i>Surface Science</i> , 2013 , 608, 173-179	1.8	8
236	Surface functionalization of fluorine-doped tin oxide samples through electrochemical grafting. <i>ACS Applied Materials & amp; Interfaces</i> , 2013 , 5, 12887-94	9.5	24
235	CO optical sensing properties of nanocrystalline ZnOAu films: Effect of doping with transition metal ions. <i>Sensors and Actuators B: Chemical</i> , 2012 , 161, 675-683	8.5	38
234	Direct synthesis of H 2 O 2 on model Pd surfaces. <i>Chemical Engineering Journal</i> , 2012 , 207-208, 845-850	14.7	11
233	Water Adsorption on Different TiO2 Polymorphs Grown as Ultrathin Films on Pt(111). <i>Journal of Physical Chemistry C</i> , 2012 , 116, 12532-12540	3.8	16
232	Building Principles and Structural Motifs in TiOx Ultrathin Films on a (111) Substrate. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 13302-13306	3.8	29
231	Growth and optical properties of silver nanostructures obtained on connected anodic aluminum oxide templates. <i>Nanotechnology</i> , 2012 , 23, 325604	3.4	17

(2010-2012)

230	of the anode electrocatalyst and the nature of the carbon support. <i>Energy and Environmental Science</i> , 2012 , 5, 8608	35.4	47
229	Top-down synthesis of multifunctional iron oxide nanoparticles for macrophage labelling and manipulation. <i>Journal of Materials Chemistry</i> , 2011 , 21, 3803		67
228	Partially oxidized graphene as a precursor to graphene. <i>Journal of Materials Chemistry</i> , 2011 , 21, 11217		66
227	Reactivity of Fe Nanoparticles on TiOx/Pt(111): A Complete Surface Science Investigation. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 15812-15821	3.8	8
226	Role of Au Nanoparticles and NiTiO3 Matrix in H2S Sensing and Its Catalytic Oxidation to SOx. <i>Sensor Letters</i> , 2011 , 9, 591-594	0.9	7
225	Hybrid materials for optics and photonics. <i>Chemical Society Reviews</i> , 2011 , 40, 886-906	58.5	184
224	Silver Nanoparticle Arrays on a DVD-Derived Template: An easy&cheap SERS Substrate. <i>Plasmonics</i> , 2011 , 6, 725-733	2.4	35
223	Tracking thermally-activated transformations in a nanostructured metal/oxide/metal system. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 17171-6	3.6	6
222	Interplay between Layer-Resolved Chemical Composition and Electronic Structure in a Sn/Pt(110) Surface Alloy. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 14264-14269	3.8	13
221	Template-assisted assembly of transition metal nanoparticles on oxide ultrathin films. <i>Progress in Surface Science</i> , 2011 , 86, 59-81	6.6	37
220	High resolution photoemission and x-ray absorption spectroscopy of a lepidocrocite-like TiO2 nanosheet on Pt(110) (1 \mathbb{D}). <i>Journal of Chemical Physics</i> , 2011 , 135, 054706	3.9	13
219	Self-assembled Transition Metal Nanoparticles on Oxide Nanotemplates. <i>Nanoscience and Technology</i> , 2011 , 415-437	0.6	
218	Au Nanoparticles in Nanocrystalline TiO2NiO Films for SPR-Based, Selective H2S Gas Sensing. <i>Chemistry of Materials</i> , 2010 , 22, 3407-3417	9.6	94
217	Probing Transformations of Relevance in Catalysis on a Single Oxide Layer: Fe on TiOx/Pt(111). Journal of Physical Chemistry Letters, 2010 , 1, 1660-1665	6.4	8
216	Stability and chemisorption properties of ultrathin TiO(x)/Pt(111) films and Au/TiO(x)/Pt(111) model catalysts in reactive atmospheres. <i>Physical Chemistry Chemical Physics</i> , 2010 , 12, 6864-74	3.6	6
215	Cation site environment in ultrathin TiOx films grown on Pt(1 1 1) probed by X-ray absorption spectroscopy at the Ti 2p edge. <i>Surface Science</i> , 2010 , 604, 366-371	1.8	7
214	Strained c(4 \square) CoO(1 0 0)-like monolayer on Pd(1 0 0): Experiment and theory. <i>Surface Science</i> , 2010 , 604, 529-534	1.8	26
213	Stability of TiO2 polymorphs: exploring the extreme frontier of the nanoscale. <i>ChemPhysChem</i> , 2010 , 11, 1550-7	3.2	31

212	Comparison study of conductometric, optical and SAW gas sensors based on porous solgel silica films doped with NiO and Au nanocrystals. <i>Sensors and Actuators B: Chemical</i> , 2010 , 143, 567-573	8.5	28
211	Cobalt oxide nanolayers on Pd(100): The thickness-dependent structural evolution. <i>Surface Science</i> , 2010 , 604, 2002-2011	1.8	36
210	An investigation of the electronic structure of Hunsaturated acetylamino acid ethyl esters using He(I) and He(II) photoelectron spectroscopy. <i>Recueil Des Travaux Chimiques Des Pays-Bas</i> , 2010 , 103, 36	5-368	11
209	Preparation, characterisation and structure of Ti and Al ultrathin oxide films on metals. <i>International Reviews in Physical Chemistry</i> , 2009 , 28, 517-576	7	72
208	Evolution of Electrical, Chemical, and Structural Properties of Transparent and Conducting Chemically Derived Graphene Thin Films. <i>Advanced Functional Materials</i> , 2009 , 19, 2577-2583	15.6	1451
207	The nitrogen photoactive centre in N-doped titanium dioxide formed via interaction of N atoms with the solid. Nature and energy level of the species. <i>Chemical Physics Letters</i> , 2009 , 477, 135-138	2.5	80
206	Silicon carbide thin films for EUV and soft X-ray applications. <i>European Physical Journal: Special Topics</i> , 2009 , 169, 159-165	2.3	10
205	Cooperative Phase Transformation in Self-Assembled Metal-on-Oxide Arrays. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 1143-1146	3.8	13
204	Structure of Reduced Ultrathin TiOx Polar Films on Pt(111). <i>Journal of Physical Chemistry C</i> , 2009 , 113, 5721-5729	3.8	60
203	Directed assembly of Au and Fe nanoparticles on a TiOx/Pt(111) ultrathin template: the role of oxygen affinity. <i>Physical Chemistry Chemical Physics</i> , 2009 , 11, 11305-9	3.6	19
202	A LEEM/micro-LEED investigation of phase transformations in TiOx/Pt(111) ultrathin films. <i>Physical Chemistry Chemical Physics</i> , 2009 , 11, 3727-32	3.6	17
201	Au nanoparticles on a templating TiO(x)/Pt(111) ultrathin polar film: a photoemission and photoelectron diffraction study. <i>Physical Chemistry Chemical Physics</i> , 2009 , 11, 2177-85	3.6	17
200	Metal adsorption on oxide polar ultrathin films. <i>Physical Chemistry Chemical Physics</i> , 2008 , 10, 1876-82	3.6	24
199	Linearly Polarized X-ray Absorption Investigation of Ultrathin NiOx/Pd(100) Films. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 5123-5128	3.8	2
198	Ultrathin TiO2 Films on (10)-Pt(110): a LEED, Photoemission, STM, and Theoretical Investigation. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 20038-20049	3.8	20
197	Mobility of Au on TiOxSubstrates with Different Stoichiometry and Defectivity. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 3187-3190	3.8	22
196	Defect evolution in oxide nanophases: The case of a zigzag-like TiOx phase on Pt(111). <i>Physical Review B</i> , 2008 , 77,	3.3	41
195	Chemisorption of CO on au/TiO(x)/Pt(111) model catalysts with different stoichiometry and defectivity. <i>Journal of Nanoscience and Nanotechnology</i> , 2008 , 8, 3595-602	1.3	1

194	Silver nanostructures on a c(4½)-NiOx/Pd(100) monolayer. Surface Science, 2008, 602, 499-505	1.8	2
193	Blue-emitting mesoporous films prepared via incorporation of luminescent Schiff base zinc(II) complex. <i>Journal of Sol-Gel Science and Technology</i> , 2008 , 47, 283-289	2.3	11
192	The Nature of Defects in Fluorine-Doped TiO2. Journal of Physical Chemistry C, 2008, 112, 8951-8956	3.8	293
191	Enhanced Reactivity of NiO/Pd(100) Ultrathin Films toward H2: Experimental and Theoretical Evidence for the Role of Polar Borders. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 19066-19077	3.8	8
190	Structure of a TiOx Zigzag-Like Monolayer on Pt(111). Journal of Physical Chemistry C, 2007, 111, 6095-6	63,082	43
189	Ordered Arrays of Au Nanoclusters by TiOxUltrathin Templates on Pt(111). <i>Journal of Physical Chemistry C</i> , 2007 , 111, 8024-8029	3.8	36
188	Core and Valence Band Photoemission Study of Highly Strained Ultrathin NiO Films on Pd(100). Journal of Physical Chemistry C, 2007 , 111, 3736-3743	3.8	10
187	Core and Valence Band Photoemission Spectroscopy of Well-Ordered Ultrathin TiOx Films on Pt(111). <i>Journal of Physical Chemistry C</i> , 2007 , 111, 869-876	3.8	53
186	Scanning tunneling microscopy and spectroscopy of Mo clusters grown on TiO2(1 1 0). <i>Surface Science</i> , 2007 , 601, 3881-3885	1.8	4
185	The structure of a stoichiometric TiO2 nanophase on Pt(111). Surface Science, 2007, 601, 3488-3496	1.8	39
184	Highly ordered self-assembled mesostructured membranes: Porous structure and pore surface coverage. <i>Microporous and Mesoporous Materials</i> , 2007 , 103, 113-122	5.3	30
183	Strain relaxation and surface morphology of nickel oxide nanolayers. Surface Science, 2006, 600, 1099-1	1108	29
182	Epitaxial MoOx nanostructures on TiO2(110) obtained using thermal decomposition of Mo(CO)6. <i>Surface Science</i> , 2006 , 600, 3345-3351	1.8	9
181	Experimental and theoretical evidence for substitutional molybdenum atoms in the TiO2(110) subsurface. <i>Physical Review B</i> , 2006 , 73,	3.3	19
180	Bottom-up assembly of single-domain titania nanosheets on (1 x 2)-Pt(110). <i>Physical Review Letters</i> , 2006 , 97, 156101	7.4	73
179	Ultrathin wagon-wheel-like TiOx phases on Pt(111): a combined low-energy electron diffraction and scanning tunneling microscopy investigation. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 15359-67	3.4	52
178	Epitaxial TiO2 nanoparticles on Pt(111): a structural study by photoelectron diffraction and scanning tunneling microscopy. <i>Physical Chemistry Chemical Physics</i> , 2005 , 7, 697-702	3.6	22
177	Ultrathin TiO(x) films on Pt(111): a LEED, XPS, and STM investigation. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 24411-26	3.4	151

176	Experimental and theoretical study of a surface stabilized monolayer phase of nickel oxide on Pd(100). <i>Journal of Physical Chemistry B</i> , 2005 , 109, 17197-204	3.4	42
175	Reactive growth of NiO ultrathin films on Pd(1 0 0): a multitechnique approach. <i>Journal of Electron Spectroscopy and Related Phenomena</i> , 2005 , 144-147, 465-469	1.7	15
174	A LEED IN structural determination of the c(4 \square) Ni3O4/Pd(1 0 0) monolayer phase: an ordered array of Ni vacancies. <i>Surface Science</i> , 2005 , 576, 1-8	1.8	32
173	Growth and thermal behaviour of NiO nanolayers on Pd(100). Surface Science, 2005, 599, 1-13	1.8	34
172	Pseudomorphic-to-bulk fcc phase transition of thin Ni films on Pd(100). Physical Review B, 2004, 70,	3.3	10
171	Reactive deposition of NiO ultrathin films on Pd(1 0 0). Surface Science, 2004, 569, 105-117	1.8	19
170	The growth of ultrathin films of vanadium oxide on TiO2(). Surface Science, 2004, 562, 150-156	1.8	29
169	Epitaxial growth of molybdenum on TiO2(1 1 0). Surface Science, 2003, 544, 135-146	1.8	10
168	Vanadium on TiO2(110): adsorption site and sub-surface migration. Surface Science, 2003, 546, 117-126	1.8	25
167	Structure of highly strained ultrathin Ni films on Pd(). Surface Science, 2003, 522, 1-7	1.8	29
166	A photoelectron diffraction study of the surface-V2O3 (20) layer on Pd(111). <i>Surface Science</i> , 2003 , 529, L234-L238	1.8	13
165	Growth of NiO ultrathin films on Pd(100) by post-oxidation of Ni films: the effect of pre-adsorbed oxygen. <i>Surface Science</i> , 2003 , 537, 36-54	1.8	28
164	An XPD and LEED study of highly strained ultrathin Ni films on Pd(1 0 0). <i>Applied Surface Science</i> , 2003 , 212-213, 264-266	6.7	8
163	Estimating soft-mode frequencies of surface overlayers by means of photoelectron diffraction: The (20) surface-V2O3/Pd(111). <i>Physical Review B</i> , 2003 , 68,	3.3	3
162	Structural studies of epitaxial ultrathin oxide films and nanoclusters by means of angle-scanned photoelectron diffraction (XPD). <i>Journal of Physics Condensed Matter</i> , 2002 , 14, 4101-4117	1.8	7
161	Ru3(CO)12Adsorption and Decomposition on TiO2. <i>Langmuir</i> , 2002 , 18, 698-705	4	23
160	Growth and structural characterisation of vanadium oxide ultrathin films on TiO2 (110). <i>Thin Solid Films</i> , 2001 , 400, 26-36	2.2	25
159	Spectroscopic and structural characterisation of a VOx (x11) ultrathin epitaxial film on Pt (111). <i>Thin Solid Films</i> , 2001 , 400, 154-159	2.2	9

158	An X-ray photoelectron diffraction structural characterization of an epitaxial MnO ultrathin film on Pt(111). <i>Surface Science</i> , 2001 , 482-485, 1474-1480	1.8	31
157	Ultrathin film growth and spectroscopic characterization of VOx (0.8?x?1.3) on Pt(1 1 1). <i>Surface Science</i> , 2001 , 490, 376-384	1.8	9
156	Electronic properties and structure of vanadia ultra-thin films grown on TiO2() in a water vapour ambient. <i>Surface Science</i> , 2001 , 494, 213-228	1.8	12
155	An X-ray photoelectron diffraction structural characterisation of epitaxial ultrathin RuO2/TiO2(110) films obtained by decomposition of Ru3(CO)12. <i>Surface Science</i> , 2000 , 454-456, 30-35	1.8	8
154	The structure of an ultrathin VOx (xII) film grown epitaxially on TiO2 (110). <i>Surface Science</i> , 2000 , 461, 118-128	1.8	22
153	Electronic structure investigation of the room temperature coadsorption of oxygen and potassium on Ni(100): from oxygen submonolayer coverage to saturated NiO/Ni(100) via an Ni(100)-(3B)-(K+O) structure <i>Surface Science</i> , 2000 , 461, 240-254	1.8	6
152	Epitaxial growth of MnO nanoparticles on Pt(111) by reactive deposition of Mn2(CO)10. <i>Surface Science</i> , 2000 , 462, 187-194	1.8	33
151	The structure of vanadia ultrathin films grown on TiO2 (110) in an oxygen ambient. <i>Surface Science</i> , 2000 , 470, L116-L122	1.8	22
150	3-(Glycidoxypropyl)-trimethoxysilaneIIiO2 hybrid organicIhorganic materials for optical limiting. Journal of Non-Crystalline Solids, 2000 , 265, 68-74	3.9	46
149	DETERMINATION OF TiO2(110) SURFACE RELAXATION BY VARIABLE POLARIZATION PHOTOELECTRON DIFFRACTION. <i>Surface Review and Letters</i> , 1999 , 06, 1201-1206	1.1	13
148	STRUCTURE OF A SINGLE ATOMIC LAYER OF NICKEL DEPOSITED ON THE Pt(111) SURFACE DETERMINED BY LOW ENERGY ELECTRON DIFFRACTION. <i>Surface Review and Letters</i> , 1999 , 06, 213-217	7 ^{1.1}	5
147	An ARPEFS study of the structure of an epitaxial VO2 monolayer at the TiO2(110) surface. <i>Applied Surface Science</i> , 1999 , 142, 146-151	6.7	24
146	A photoemission and resonant photoemission study of Ba deposition at the TiO2 (110) surface. <i>Applied Surface Science</i> , 1999 , 142, 135-139	6.7	14
145	Substitutional Ti(1-x)RuxO2 surface alloys obtained from the decomposition of Ru3(CO)12 on TiO2(110). <i>Physical Chemistry Chemical Physics</i> , 1999 , 1, 709-711	3.6	21
144	Ultrathin V films on Pt (111): a structural study by means of X-ray photoelectron spectroscopy and diffraction. <i>Surface Science</i> , 1999 , 426, 235-250	1.8	8
143	Ultrathin VOx/TiO2(110) (xll) film preparation by controlled oxidation of metal deposits. <i>Surface Science</i> , 1999 , 436, 227-236	1.8	34
142	Preparation of epitaxial ultrathin RuO2IIiO2(110) films by decomposition of Ru3(CO)12. <i>Surface Science</i> , 1999 , 443, 277-286	1.8	20
141	Strain analysis of epitaxial ultrathin films on Pt(111). Surface Science, 1998 , 400, 239-246	1.8	17

140	Synchrotron-radiation-induced photoemission study of VO2 ultrathin films deposited on TiO2(110). <i>Surface Science</i> , 1998 , 402-404, 719-723	1.8	16
139	Polarization effects to enhance surface sensitivity of angle-scanned X-ray photoelectron diffraction in synchrotron-radiation-based experiments. <i>Surface Science</i> , 1998 , 415, L1007-L1015	1.8	4
138	Reactivity of simple alcohols on Fe2O3powders. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1998 , 94, 173-182		46
137	Growth and the structure of epitaxial VO2 at the TiO2(110) surface. <i>Physical Review B</i> , 1997 , 55, 7850-	7858	84
136	EVIDENCE BY ANGLE-SCANNED PHOTOELECTRON DIFFRACTION FOR A CO-INDUCED RESTRUCTURING OF A Ni/Pt(111) MONOLAYER. <i>Surface Review and Letters</i> , 1997 , 04, 1185-1189	1.1	4
135	Angle-Scanned Photoelectron Diffraction 1997 , 237-266		
134	Photoelectron diffraction study on the structure of a vanadium ultrathin film deposited at the TiO2(110) surface. <i>Surface Science</i> , 1996 , 349, L169-L173	1.8	44
133	An experimental and theoretical study of the interaction of CH3OH and CH3SH with ZnO. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1996 , 92, 3247		21
132	Angle-Scanned Photoelectron Diffraction: Probing crystalline ultrathin films. <i>Advanced Materials</i> , 1996 , 8, 315-326	24	28
131	Early stages of epitaxial growth of vanadium oxide at the TiO2(110) surface studied by photoelectron diffraction. <i>Physical Review B</i> , 1996 , 54, 13464-13467	3.3	36
130	XPS and UVI/IS study of high-purity Fe2O3 thin films obtained using the solgel technique. <i>Journal of Materials Chemistry</i> , 1995 , 5, 79-83		43
129	DETERMINATION OF THE OVERLAYER/SUBSTRATE REGISTRY IN Ni(1 ML)/Pt(111) BY ANGLE-SCANNED PHOTOELECTRON DIFFRACTION. <i>Surface Review and Letters</i> , 1995 , 02, 787-793	1.1	6
128	An X-ray photoelectron spectroscopy study of the surface composition of CoxFe80\(\mathbb{B}\)Si10B10 metallic glasses. <i>Journal of Alloys and Compounds</i> , 1995 , 226, 213-221	5.7	4
127	Angle-scanned photoelectron diffraction chemisorption studies using heteroatomic surface monolayers. <i>Surface Science</i> , 1995 , 331-333, 35-41	1.8	4
126	Photoelectron diffraction study of ultrathin film growth of Ni on Pt(111). <i>Surface Science</i> , 1995 , 340, 215-223	1.8	21
125	Nanocrystalline Fe2O3 sol-gel thin films: a microstructural study. <i>Journal of Non-Crystalline Solids</i> , 1995 , 192-193, 435-438	3.9	26
124	A theoretical and experimental investigation of the electronic structure of alpha -Fe2O3thin films. Journal of Physics Condensed Matter, 1995 , 7, L299-L305	1.8	13
123	X-ray photoelectron spectroscopy and scanning electron microscopy of FeSi2 films grown by Ion Beam assisted deposition. <i>Surface and Interface Analysis</i> , 1994 , 22, 36-40	1.5	5

122	Angle-resolved X-ray photoelectron spectroscopy contribution to elucidation of the mechanism of cathodic deposition of As?Sb alloys. <i>Journal of Electroanalytical Chemistry</i> , 1994 , 374, 37-43	4.1	2
121	High-purity WO3 solgel coatings: synthesis and characterization. <i>Journal of Materials Chemistry</i> , 1994 , 4, 407-411		37
120	Surface carboxylate species on Cu(100) studied by angle-scanned photoelectron diffraction and LCAO-LDF calculations. <i>Surface Science</i> , 1994 , 315, 309-322	1.8	29
119	Angle-scanned photoelectron diffraction chemisorption study of c(2 🗈)-O on Ni(1 ML)/Cu(100). <i>Surface Science</i> , 1994 , 321, L214-L218	1.8	8
118	An angle-scanned photoelectron diffraction study on the surface relaxation of ZnO (0001). <i>Surface Science</i> , 1994 , 319, 149-156	1.8	36
117	A LCAO-LDF study of formate chemisorption on Cu(100). Surface Science, 1994, 307-309, 95-100	1.8	23
116	Chemical interactions in titanium- and tungsten-implanted fused silica. <i>Journal of Non-Crystalline Solids</i> , 1993 , 162, 205-216	3.9	35
115	Azimuthal orientation of formate and acetate on Cu(100) studied by angle-scanned photoelectron diffraction. <i>Surface Science</i> , 1993 , 291, L756-L758	1.8	10
114	X-ray photoelectron diffraction from the CdTe(111)A polar surface. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 1993 , 16, 155-159	3.1	3
113	XPS Study of Chemical Interactions in Ion-Implanted Silica Glasses. <i>Materials Research Society Symposia Proceedings</i> , 1992 , 268, 325		2
112	Xps Study of the Nitridation Process of A Polytitanocarbosilane into Si-Ti-N-O Ceramics. <i>Materials Research Society Symposia Proceedings</i> , 1992 , 271, 899		
111	Nitridation of SiO2TiO2 sol-gel coatings by ammonolysis and ion implantation. <i>Journal of Non-Crystalline Solids</i> , 1992 , 147-148, 451-456	3.9	5
110	SiO2TiO2 sol-gel coatings: a surface study by X-ray photoelectron spectroscopy. <i>Journal of Non-Crystalline Solids</i> , 1992 , 139, 198-204	3.9	32
109	Electrochemical and XPS studies of the effects of gamma-ray irradiation on the passive film on 446 stainless steel. <i>Corrosion Science</i> , 1992 , 33, 729-734	6.8	7
109		6.8	3
	stainless steel. <i>Corrosion Science</i> , 1992 , 33, 729-734 Crystalline effects on Auger and photoelectron emission from clean and Cs-covered GaAs(110)		
108	stainless steel. <i>Corrosion Science</i> , 1992 , 33, 729-734 Crystalline effects on Auger and photoelectron emission from clean and Cs-covered GaAs(110) surfaces. <i>Applied Surface Science</i> , 1992 , 56-58, 205-210 A theoretical investigation of the electronic structure, hyperfine properties and binding energies of	6.7	3

104	X-ray photoelectron diffraction from the HgCdTe(111) surface. <i>Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena</i> , 1991 , 9, 1870		6
103	Surface characterization of Fe75B20TM5 (TM? V, Co) amorphous ribbons by X-ray photoelectron spectroscopy. <i>The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties</i> , 1990 , 61, 691-699		2
102	A molecular cluster approach to the electronic structure of anomalous muonium in diamond. <i>Chemical Physics</i> , 1990 , 148, 183-192	2.3	2
101	Multicentered Interactions in Carbonyl Bridged Dimers by UV-PE Spectroscopy and DV-XH Quantum Mechanical Calculations. <i>Journal of Electron Spectroscopy and Related Phenomena</i> , 1990 , 51, 197-210	1.7	
100	Bonding in square-planar MCl(CX)[P(i-Pr)3]2 complexes of rhodium and iridium (X = O and CH2) studied by UV photoelectron spectroscopy and DV-XHzalculations. <i>Journal of Organometallic Chemistry</i> , 1990 , 382, 445-454	2.3	1
99	Polarity determination of the HgCdTe(111) surface by azimuthal X-ray photoelectron diffraction experiments. <i>Physica Scripta</i> , 1990 , 41, 913-918	2.6	4
98	XPS Characterization of Mixed Carbides Obtained from Polymer Precursors. <i>Materials Research Society Symposia Proceedings</i> , 1990 , 180, 811		1
97	Electronic structures of transition-metal four-co-ordinated complexes. Part 3. Theoretical ab initio and ultraviolet photoelectron spectroscopy study of nickel(II), palladium(II), and platinum(II) bis(O,O?-diethyl dithiophosphate) square-planar complexes. <i>Journal of the Chemical Society Dalton</i>		7
96	The pyrolysis process of a polytitanocarbosilane into SiC/TiC ceramics: An XPS study. <i>Journal of Materials Research</i> , 1990 , 5, 1958-1962	2.5	22
95	On the formation of silicon oxynitride by ion implantation in fused silica. <i>Journal of Non-Crystalline Solids</i> , 1990 , 125, 293-301	3.9	50
94	Mixing and annealing effects in the Krypton-irradiated Fe?Pd system. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 1989 , 115, 165-170	5.3	5
93	Molecular orbital analysis of some ligand-bridged iron binuclear complexes by UV photoelectron spectroscopy and DV-XRalculations. <i>Journal of Organometallic Chemistry</i> , 1989 , 366, 343-355	2.3	12
92	Theoretical, UV-PES, XPS, and Moessbauer investigation of the electronic structure of dinuclear metal carbonyl diimine complexes with a metallacyclopentadienyl system. <i>Inorganic Chemistry</i> , 1989 , 28, 4243-4250	5.1	3
91	UV photoelectron spectra and electronic structure of 1,2-diosmacyclopropane and 1,2-diosmacyclobutane complexes. <i>Organometallics</i> , 1989 , 8, 1777-1785	3.8	7
90	Photoelectron spectroscopy and ab-initio study of the conformation of Eethylthioacetophenones. Journal of the Chemical Society Perkin Transactions II, 1989, 143-146		2
89	DV-XE alculations on some metallacyclopentadienyl dinuclear complexes. <i>Journal De Chimie Physique Et De Physico-Chimie Biologique</i> , 1989 , 86, 841-846		2
88	Gas-phase UV photoelectron spectra and DV-X\darkalculations of bridged organometallic dimers. Journal of Molecular Structure, 1988 , 173, 313-328	3.4	8
87	Electronic structure of tetracoordinate transition-metal complexes. 2. Comparative theoretical ab initio/Hartree-Fock-Slater and UV-photoelectron spectroscopic studies of building blocks for low-dimensional conductors: glyoximate complexes of palladium(II) and platinum(II). <i>Inorganic</i>	5.1	13

86	Tin-sulfur and tin-selenium bonding in some tin(IV) compounds studied by UV photoelectron and NMR spectroscopy and pseudopotential ab initio calculations. <i>Organometallics</i> , 1988 , 7, 262-266	3.8	3
85	Ruthenium carbonyl 1,4-diaza-1,3-butadiene (R-DAB) complexes. A theoretical and experimental investigation of the electronic structure of Ru2(CO)4(R-DAB)(.muCO) and Ru2(CO)4(R-DAB)(.muHC.tplbond.CH). <i>Journal of the American Chemical Society</i> , 1988 , 110, 1775-1781	16.4	6
84	Ion beam mixing effects in krypton-irradiated Fe?Pd bilayers. <i>Journal of the Less Common Metals</i> , 1988 , 145, 513-519		6
83	Hyperconjugative interactions in halogen-substituted carbonyls: ultraviolet photoelectron spectroscopy of Ehalogenoacetophenones. <i>Journal of the Chemical Society Perkin Transactions II</i> , 1987 , 1459-1463		14
82	UV photoelectron spectrum and electronic structure of bis(.eta.5-cyclopentadienyl)dimunitrosyldiiron: an interpretation by means of ab initio CI calculations. <i>Inorganic Chemistry</i> , 1987 , 26, 2588-2594	5.1	11
81	DV-X.alpha. calculations, UV-PE spectra, and redox properties of nitrosyl-bridged binuclear cobalt complexes. <i>Organometallics</i> , 1987 , 6, 597-606	3.8	5
80	UV photoelectron spectra and DV-X.alpha. calculations on diatomic rhodium formamidinate complexes. <i>Inorganic Chemistry</i> , 1987 , 26, 3406-3409	5.1	26
79	Experimental and theoretical studies of the bonding in CpCoS2N2. <i>Organometallics</i> , 1987 , 6, 2223-2227	3.8	7
78	Electronic structure of nonacarbonylbis(.mu.3-fluoromethylidyne)triiron by means of UV photoelectron spectroscopy and DV-X.alpha. quantum-mechanical calculations. <i>Inorganic Chemistry</i> , 1987 , 26, 465-467	5.1	5
77	UV-PE spectra and DV-X.alpha. calculations of some phosphido-bridged dimers. <i>Organometallics</i> , 1987 , 6, 2536-2545	3.8	7
76	Combined UV-PES and theoretical study of binuclear M2(CO)6(C4H4) complexes (M = Fe, Ru, Os). <i>Inorganic Chemistry</i> , 1987 , 26, 2041-2046	5.1	14
75	An accurate DV X\(\text{H}\)nvestigation of the electronic structure of bis (2,4-pentanedionato) palladium(II). Chemical Physics Letters, 1987, 141, 193-197	2.5	2
74	Theoretical and spectroscopic studies on imino-carbon palladated pyridine-2-carbaldimines. <i>Inorganica Chimica Acta</i> , 1987 , 132, 197-206	2.7	9
73	Electronic structure of bimetallic "flyover-bridge" derivatives. UV-PES and ab initio study of [cyclic] Fe2(CO)6[R-C2-R)2CO] and [cyclic] Ru2(CO)6[(R-C2-R)2CO] (R = C2H5). <i>Inorganic Chemistry</i> , 1986 , 25, 511-514	5.1	4
72	The alkyne-cluster interaction: structural, theoretical, and spectroscopic study on the parallel .mu.3eta.2 bonding mode in trinuclear carbonyl clusters of ruthenium and osmium. <i>Inorganic Chemistry</i> , 1986 , 25, 4004-4010	5.1	32
71	UV photoelectron spectra and pseudopotential ab initio calculations on trans-dihalobis(triethylphosphine)platinum complexes (halo = chloro, bromo, iodo). <i>Inorganic Chemistry</i> , 1986 , 25, 2872-2877	5.1	4
7°	He(I)and He(II) photoelectron spectra and pseudopotential ab initio calculations of some tetracoordinated tin(IV) derivatives. <i>Organometallics</i> , 1986 , 5, 1866-1873	3.8	12
69	Electronic structure of transition-metal tetracoordinated complexes. 1. Theoretical ab initio and UV-photoelectron spectroscopy study of palladium(II) and platinum(II) square-planar acetylacetonate complexes. <i>Ingranic Chemistry</i> 1986 , 25, 3997-4003	5.1	24

68	Intramolecular hydrogen bonding in 8-hydroxyquinoline and 8-hydroxyquinoline-N-oxide. UV photoelectron spectra and MO calculations. <i>Journal De Chimie Physique Et De Physico-Chimie Biologique</i> , 1986 , 83, 507-510		3
67	Molecular and electronic structure of the dehydroalanine derivatives. <i>Tetrahedron</i> , 1985 , 41, 2015-2018	2.4	16
66	He(I)/He(II) Sn 5p photoionization cross sections: definitive evidence from the spectra of Sn2(CH3)6. <i>Journal of Electron Spectroscopy and Related Phenomena</i> , 1985 , 36, 207-211	1.7	2
65	Ultraviolet photoelectron and ab initio study of the conformation of some p-Substituted Phenylthioacetonitriles. <i>Journal of the Chemical Society Perkin Transactions II</i> , 1985 , 2037-2040		6
64	UV photoelectron and theoretical studies of organometal carbonyl clusters of ruthenium and osmiummuHydridomu.3-allyl and .muhydridomu.3-allenyl triangulo cluster compounds. <i>Inorganic Chemistry</i> , 1985 , 24, 570-575	5.1	10
63	The .sigmapi. interactions in alkynyltin(IV) compounds studies by UV photoelectron spectroscopy and pseudopotential ab initio calculations. <i>Organometallics</i> , 1985 , 4, 290-295	3.8	12
62	Theoretical ab initio and UV-PES study of the M(CO)3-butadiene interaction in bicyclic polyene complexes. <i>Organometallics</i> , 1985 , 4, 836-841	3.8	8
61	Electronic structure of ferracyclopentadienyl derivatives. UV PES ab initio study of Fe2(.muCO)(CO)5(C4R4) and Fe3(.muCO)2(CO)6(C4R4). <i>Inorganic Chemistry</i> , 1985 , 24, 1241-1246	5.1	17
60	Transition metal isocyanide bonding: a photoelectron spectroscopic study of iron tetracarbonyl isocyanide complexes. <i>Organometallics</i> , 1985 , 4, 311-316	3.8	14
59	Electronic structure of the 1,5-dithia-2,4,6,8-tetrazocine ring. Ab initio and CNDO-CI study. <i>Inorganica Chimica Acta</i> , 1984 , 90, L55-L58	2.7	9
58	B-S bonding mode in H2M3(CO)9S clusters of Ru and Os. An UV?PES and theoretical study. <i>Inorganica Chimica Acta</i> , 1984 , 84, 95-100	2.7	3
57	Ab initio molecular orbital study of the geometric and electronic structure of dimethylsulfurdiimine. <i>Inorganica Chimica Acta</i> , 1984 , 90, 105-109	2.7	9
56	Structure of N-acetyl-2,3-didehydroproline, C7H9NO3. <i>Acta Crystallographica Section C: Crystal Structure Communications</i> , 1984 , 40, 327-330		5
55	13C?13C coupling constants in 🛭 - and 🗗 - (🔻 -acetylene) complexes of cobalt. <i>Journal of Organometallic Chemistry</i> , 1984 , 262, c1-c4	2.3	13
54	UV photoelectron study of N-phenyl cyclic imides. <i>Journal of Crystallographic and Spectroscopic Research</i> , 1984 , 14, 349-357		1
53	Electronic interaction in heterosubstituted acetones studied by means of ultraviolet photoelectron and electron transmission spectroscopy. <i>Journal of the Chemical Society Perkin Transactions II</i> , 1984 , 150)5	20
52	The alkyne-cluster interaction: structural, theoretical and mechanistic studies on the M2M'(CO)9(.mu.3eta.2-alkyne) complex (M = Fe; M' = Fe and Ru). <i>Organometallics</i> , 1984 , 3, 1510-1515	3.8	38
51	Helium(He I and He II) photoelectron spectra of nickel(II), palladium(II) and platinum(II) diethyldithiocarbamate complexes. <i>Inorganic Chemistry</i> , 1984 , 23, 702-706	5.1	13

50	He(I) and He(II) photoelectron spectra of trans - [Pd(PEt3)2X2] complexes. <i>Inorganica Chimica Acta</i> , 1983 , 77, L229-L230	2.7	3
49	Investigation of the electronic structure of trans-cinnamic acid and cinnamamide by He(I) and He(II) photoelectron spectroscopy. <i>Journal of Molecular Structure</i> , 1983 , 101, 167-171	3.4	4
48	UV photoelectron spectra of peptide unit model compounds: Methionyl-containing cyclic dipeptides. <i>Journal of Molecular Structure</i> , 1983 , 96, 369-372	3.4	5
47	The alkyne-cluster interaction in a ruthenium B utterfly[acetylenic carbonyl complex. An UV-PES and theoretical study. <i>Journal of Organometallic Chemistry</i> , 1983 , 244, 383-391	2.3	9
46	Gas-phase ultraviolet photoelectron spectra of [$\{Ni(EC5H5)\}2(\bar{\mu}-C2R2)\}$] (R = H or CF3) complexes. Journal of the Chemical Society Dalton Transactions, 1983 , 869-872		4
45	UV photoelectron and theoretical studies of organometal carbonyl clusters of ruthenium and osmiummuHydridomu.3-alkynyl triangulo cluster compounds. <i>Inorganic Chemistry</i> , 1983 , 22, 744-745	8 ^{5.1}	17
44	UV-PES, carbon-13 NMR and theoretical studies on the alkyne-cluster interaction in Fe3(CO)9(.mu.3eta.2-EtC2Et). <i>Organometallics</i> , 1983 , 2, 430-434	3.8	34
43	Gas-phase UV photoelectron spectra of some edge-bridged decacarbonyltriosmium cluster. <i>Inorganic Chemistry</i> , 1983 , 22, 3899-3903	5.1	4
42	Photoelectron spectroscopy of f-element organometallic complexes. 3. Chloro, bromo, methoxy, and methyl complexes of triindenylthorium(IV) and -uranium(IV). <i>Inorganic Chemistry</i> , 1983 , 22, 216-220	5.1	11
41	Electronic structure and hydrogen bonding of valence-ionized states of Ehydroxyacrolein. <i>Computational and Theoretical Chemistry</i> , 1983 , 105, 135-142		6
40	The nature of the lowest virtual molecular orbitals in fluorobenzenes. <i>Computational and Theoretical Chemistry</i> , 1982 , 89, 247-254		2
39	On the conformational flexibility of model compounds of Eubstituted Eunsaturated peptides. <i>Computational and Theoretical Chemistry</i> , 1982 , 86, 297-300		45
38	Theoretical and spectroscopic studies of (.mubutatriene)hexacarbonyldiiron compounds. <i>Inorganic Chemistry</i> , 1982 , 21, 4073-4076	5.1	5
37	Con about balicar/U.s. () about all attended to a subtract ball and a subtract ball and a subtract		
31	Gas-phase helium(He I) photoelectron spectra of methinyltricobalt enneacarbonyl clusters. Inorganic Chemistry, 1982, 21, 1081-1084	5.1	12
36		5.1	7
	Electron structure of [{Ni(B-C5H5)(\bar{p}-CO)}2] by He(I) and He(II) photoelectron spectroscopy.	2.4	
36	Electron structure of [{Ni(B-C5H5)(D-CO)}2] by He(I) and He(II) photoelectron spectroscopy. Journal of the Chemical Society Dalton Transactions, 1982, 2047-2049 Conformational flexibility of dehydroalanine derivatives. Crystal and molecular structure of		7

32	UV photoelectron study of conjugation effects inN-vinylphthalimide. <i>Journal of Crystallographic and Spectroscopic Research</i> , 1982 , 12, 489-492		2
31	Fine structure of UV photoelectron spectra of cyclic imides. <i>Journal of Crystallographic and Spectroscopic Research</i> , 1982 , 12, 227-237		1
30	Electronic structure of (\(\mathbb{Q}\)-CO)[(\(\mathbb{B}\)-C5H5)Rh(CO)]2 by UV photoelectron spectroscopy and CNDO calculations. <i>Journal of Organometallic Chemistry</i> , 1982 , 240, 191-197	2.3	4
29	Uv photoelectron spectra of iron tricarbonyl complexes of 2,3,5,6-tetrakis(methylene)-7-oxabicyclo[2.2.1]heptane. <i>Journal of Organometallic Chemistry</i> , 1982 , 224, 147-152	2.3	2
28	UV photoelectron spectra of some organometallic carbonyl osmium clusters. <i>Journal of Organometallic Chemistry</i> , 1982 , 229, C27-C30	2.3	5
27	Ground and ionized state intramolecular hydrogen bonds in azomethine compounds. <i>Journal of the Chemical Society, Faraday Transactions 2</i> , 1981 , 77, 1783		4
26	UV photoelectron spectra of 5- and 6-azauracil. <i>Chemical Physics Letters</i> , 1981 , 80, 188-191	2.5	7
25	Electronic structure of some methinyltricobalt enneacarbonyls by means of ultraviolet photoelectron spectroscopy. <i>Journal of Organometallic Chemistry</i> , 1981 , 208, C6-C8	2.3	7
24	Conformational flexibility of the dehydroalanine derivatives: molecular and electronic structure of (Z)-N-acetyldehydrophenylalanine. <i>Tetrahedron</i> , 1981 , 37, 3507-3512	2.4	51
23	The electronic structure of hydrotris(1-pyrazolyl)borate ligand by He-I and He-II photoelectron spectroscopy. <i>Inorganica Chimica Acta</i> , 1981 , 48, 61-64	2.7	12
22	Electronic structure of Emethylene-bis-[dicarbonyl(B-cyclopentadienyl)manganese] by UV photoelectron spectroscopy. <i>Inorganica Chimica Acta</i> , 1981 , 48, 73-76	2.7	11
21	Electronic structure of N?S compounds. A CNDO study of transition metal thionitrosyl complexes Ni(S2N2H)2 and Pd(S2N2H)2. <i>Inorganica Chimica Acta</i> , 1981 , 48, 233-236	2.7	8
20	Electronic structure of trans-[(B-C5H5)Fe(CO)2]2 by He(I) and He(II) photoelectron spectroscopy and AB initio calculations. <i>Journal of Organometallic Chemistry</i> , 1980 , 194, 83-89	2.3	11
19	Conformational flexibility of peptides containing Hunsaturated amino acid residues. I. Conformational analysis of N-acetyl-N?-methylamides of dehydroalanine and N-methyldehydroalanine. <i>Biopolymers</i> , 1980 , 19, 469-475	2.2	44
18	Comments on the validity of koopmans' theorem in photoelectron spectra of Hunsaturated carbonyls. <i>Journal of Electron Spectroscopy and Related Phenomena</i> , 1980 , 18, 267-269	1.7	14
17	Theoretical study on the stacking faults type disorder in crystals of finite size. <i>Inorganica Chimica Acta</i> , 1980 , 41, 207-212	2.7	2
16	Ultraviolet photoelectron spectra of Bctahedral[diethyldithiophosphato)metal(III) complexes. <i>Inorganica Chimica Acta</i> , 1980 , 44, L25-L27	2.7	3
15	Lone-pair interactions in the photoelectron spectra of dicarboxylic acids: malonic acid and its ⊞lkyl derivatives. <i>Journal of Molecular Structure</i> , 1980 , 62, 189-193	3.4	6

LIST OF PUBLICATIONS

14	He(I) and He(II) photoelectron spectra of methyltin chlorides. <i>Journal of the Chemical Society Dalton Transactions</i> , 1980 , 145		5
13	Investigation of the electronic structure of 2-(acetylamino)prop-2-enoic acid (N-acetyldehydroalanine) by HeI and HeII photoelectron spectroscopy. <i>Journal of the Chemical Society Perkin Transactions II</i> , 1980 , 483-485		12
12	He-I and He-II excited photoelectron spectra of cyclohepttatrienetricarbonyl complexes of group via metals. <i>Journal of Organometallic Chemistry</i> , 1979 , 182, 511-519	2.3	6
11	Crystal structure and conformational flexibility of 2-(acetylamino)prop-2-enoic acid (N-acetyldehydroalanine). <i>Journal of the Chemical Society Perkin Transactions II</i> , 1979 , 927-929		41
10	Electronic structure of xanthine and its biological methyl derivatives by u.v. photoelectron spectroscopy. <i>Spectrochimica Acta Part A: Molecular Spectroscopy</i> , 1978 , 34, 1235-1238		12
9	Effects of assumed electronic configuration on the electronic band calculations of second series transition metals. <i>Chemical Physics Letters</i> , 1978 , 55, 374-376	2.5	1
8	UV Phoelectron Spectra of Biological Xanthines: Theophylline, Theobromine and Caffeine. <i>Spectroscopy Letters</i> , 1977 , 10, 757-761	1.1	3
7	1H, 13C NMR and theoretical studies on (Arene)tricarbonylchromium(0) complexes. <i>Inorganica Chimica Acta</i> , 1977 , 24, 195-199	2.7	20
6	Torsional potential barriers in conjugated molecules: unsaturated N-substituted amides. <i>Journal of Molecular Structure</i> , 1977 , 41, 131-137	3.4	13
5	Conformation and electronic structure of oxalic acid by the ab intiio method. <i>Journal of Molecular Structure</i> , 1977 , 37, 160-163	3.4	2
4	Conformational analysis of malonic acid and its derivatives: ab initio, CNDO/2 and empirical calculations. <i>Journal of Molecular Structure</i> , 1977 , 38, 245-252	3.4	12
3	Theoretical conformational analysis on cyclo(prolyl-phenylalanyl) peptides. <i>Biopolymers</i> , 1977 , 16, 707-	14 .2	11
2	Graphene Acid: a Versatile 2D Platform for Catalysis. Israel Journal of Chemistry,	3.4	2
1	The Born of Fluorescence from Thermally Polymerized Glycine. <i>Macromolecular Chemistry and Physics</i> ,2200052	2.6	О