Jiantao T Han

List of Publications by Citations

Source: https://exaly.com/author-pdf/6945548/jiantao-t-han-publications-by-citations.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 103
 5,611
 41
 73

 papers
 citations
 h-index
 g-index

 112
 6,880
 10.4
 5.88

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
103	Nitrogen-doped graphene-rich catalysts derived from heteroatom polymers for oxygen reduction in nonaqueous lithium-O2 battery cathodes. <i>ACS Nano</i> , 2012 , 6, 9764-76	16.7	443
102	Routes to High Energy Cathodes of Sodium-Ion Batteries. <i>Advanced Energy Materials</i> , 2016 , 6, 1501727	21.8	331
101	Superionic conductivity in lithium-rich anti-perovskites. <i>Journal of the American Chemical Society</i> , 2012 , 134, 15042-7	16.4	322
100	New Anode Framework for Rechargeable Lithium Batteries. <i>Chemistry of Materials</i> , 2011 , 23, 2027-2029	€9.6	280
99	Tunable Synthesis of Bismuth Ferrites with Various Morphologies. <i>Advanced Materials</i> , 2006 , 18, 2145-2	. 124β	253
98	3-V Full Cell Performance of Anode Framework TiNb2O7/Spinel LiNi0.5Mn1.5O4. <i>Chemistry of Materials</i> , 2011 , 23, 3404-3407	9.6	162
97	Sonocatalytic degradation of methyl orange in the presence of TiO2 catalysts and catalytic activity comparison of rutile and anatase. <i>Ultrasonics Sonochemistry</i> , 2005 , 12, 331-7	8.9	159
96	Ultrasound switch and thermal self-repair of morphology and surface wettability in a cholesterol-based self-assembly system. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 1063-7	16.4	158
95	NiFe (Oxy) Hydroxides Derived from NiFe Disulfides as an Efficient Oxygen Evolution Catalyst for Rechargeable Zn-Air Batteries: The Effect of Surface S Residues. <i>Advanced Materials</i> , 2018 , 30, e180075	74	153
94	Preparation and study of polyacryamide-stabilized silver nanoparticles through a one-pot process. Journal of Physical Chemistry B, 2006 , 110, 11224-31	3.4	130
93	Synthesis, Crystal Structure, and Elastic Properties of Novel Tungsten Nitrides. <i>Chemistry of Materials</i> , 2012 , 24, 3023-3028	9.6	127
92	High-performance single atom bifunctional oxygen catalysts derived from ZIF-67 superstructures. <i>Nano Energy</i> , 2019 , 61, 245-250	17.1	121
91	Ionic distribution and conductivity in lithium garnet Li7La3Zr2O12. <i>Journal of Power Sources</i> , 2012 , 209, 278-281	8.9	120
90	Metal Drganic Framework Derived Honeycomb Co9S8@C Composites for High-Performance Supercapacitors. <i>Advanced Energy Materials</i> , 2018 , 8, 1801080	21.8	110
89	Low-Cost and High-Performance Hard Carbon Anode Materials for Sodium-Ion Batteries. <i>ACS Omega</i> , 2017 , 2, 1687-1695	3.9	98
88	A Dual-Insertion Type Sodium-Ion Full Cell Based on High-Quality Ternary-Metal Prussian Blue Analogs. <i>Advanced Energy Materials</i> , 2018 , 8, 1702856	21.8	98
87	High-Performance Direct Methanol Fuel Cells with Precious-Metal-Free Cathode. <i>Advanced Science</i> , 2016 , 3, 1600140	13.6	89

(2020-2018)

86	Rare Earth Ion-Doped CsPbBr3 Nanocrystals. Advanced Optical Materials, 2018, 6, 1700864	8.1	87
85	High valence Mo-doped Na3V2(PO4)3/C as a high rate and stable cycle-life cathode for sodium battery. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 1390-1396	13	85
84	Experimental visualization of lithium conduction pathways in garnet-type Li7La3Zr2O12. <i>Chemical Communications</i> , 2012 , 48, 9840-2	5.8	79
83	Amorphous Co HeP nanospheres for efficient water oxidation. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 25378-25384	13	78
82	Sub-6 nm Fully Ordered L10-PtNiCo Nanoparticles Enhance Oxygen Reduction via Co Doping Induced Ferromagnetism Enhancement and Optimized Surface Strain. <i>Advanced Energy Materials</i> , 2019 , 9, 1803771	21.8	76
81	Lithium Ion Intercalation Performance of Niobium Oxides: KNb5O13 and K6Nb10.8O30. <i>Chemistry of Materials</i> , 2009 , 21, 4753-4755	9.6	75
80	Tungsten-Doped L1 -PtCo Ultrasmall Nanoparticles as a High-Performance Fuel Cell Cathode. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 15471-15477	16.4	62
79	A Metal-Organic Compound as Cathode Material with Superhigh Capacity Achieved by Reversible Cationic and Anionic Redox Chemistry for High-Energy Sodium-Ion Batteries. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 6793-6797	16.4	60
78	Thermally-induced reversible structural isomerization in colloidal semiconductor CdS magic-size clusters. <i>Nature Communications</i> , 2018 , 9, 2499	17.4	60
77	Superior Na-ion storage achieved by Ti substitution in Na3V2(PO4)3. <i>Energy Storage Materials</i> , 2018 , 15, 108-115	19.4	56
76	Selective synthesis of TbMn(2)O(5) nanorods and TbMnO(3) micron crystals. <i>Journal of the American Chemical Society</i> , 2006 , 128, 14454-5	16.4	55
75	Structure Distortion Induced Monoclinic Nickel Hexacyanoferrate as High-Performance Cathode for Na-Ion Batteries. <i>Advanced Energy Materials</i> , 2019 , 9, 1803158	21.8	54
74	Inhibition of Manganese Dissolution in Mn2O3 Cathode with Controllable Ni2+ Incorporation for High-Performance Zinc Ion Battery. <i>Advanced Functional Materials</i> , 2021 , 31, 2009412	15.6	54
73	Enhancing Sodium-Ion Storage Behaviors in TiNbO by Mechanical Ball Milling. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 8696-8703	9.5	53
72	Efficient entrapment and catalytic conversion of lithium polysulfides on hollow metal oxide submicro-spheres as lithium-sulfur battery cathodes. <i>Nanoscale</i> , 2018 , 10, 5634-5641	7.7	53
71	Bifunctional Atomically Dispersed Mo-N/C Nanosheets Boost Lithium Sulfide Deposition/Decomposition for Stable Lithium-Sulfur Batteries. <i>ACS Nano</i> , 2020 , 14, 10115-10126	16.7	52
70	Graphene-Roll-Wrapped Prussian Blue Nanospheres as a High-Performance Binder-Free Cathode for Sodium-Ion Batteries. <i>ACS Applied Materials & Discrete Samp; Interfaces</i> , 2017 , 9, 25317-25322	9.5	50
69	Atomic-Level Fe-N-C Coupled with Fe C-Fe Nanocomposites in Carbon Matrixes as High-Efficiency Bifunctional Oxygen Catalysts. <i>Small</i> , 2020 , 16, e1906057	11	50

68	Structure, morphology, and cathode performance of Li1½[Ni0.5Mn1.5]O4 prepared by coprecipitation with oxalic acid. <i>Journal of Power Sources</i> , 2010 , 195, 2918-2923	8.9	47
67	Ultrasound Switch and Thermal Self-Repair of Morphology and Surface Wettability in a Cholesterol-Based Self-Assembly System. <i>Angewandte Chemie</i> , 2008 , 120, 1079-1083	3.6	46
66	Enhanced Oxygen Evolution Reaction Activity by Encapsulating NiFe Alloy Nanoparticles in Nitrogen-Doped Carbon Nanofibers. <i>ACS Applied Materials & Activity & Activi</i>	9.5	41
65	High-Performance Hard Carbon Anode: Tunable Local Structures and Sodium Storage Mechanism. <i>ACS Applied Energy Materials</i> , 2018 , 1, 2295-2305	6.1	41
64	Porous NaTi(PO)/C Hierarchical Nanofibers for Ultrafast Electrochemical Energy Storage. <i>ACS Applied Materials & Applied & Applied Materials & Applied & App</i>	9.5	41
63	Synthesis and magnetic property of submicron Bi2Fe4O9. <i>Journal of Crystal Growth</i> , 2006 , 294, 469-473	1.6	41
62	Access to M[sup 3+]/M[sup 2+] Redox Couples in Layered LiMS[sub 2] Sulfides (M=Ti, V, Cr) as Anodes for Li-Ion Battery. <i>Journal of the Electrochemical Society</i> , 2009 , 156, A703	3.9	40
61	F-Doped NaTi(PO)/C Nanocomposite as a High-Performance Anode for Sodium-Ion Batteries. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 3116-3124	9.5	36
60	F-doped O3-NaNi1/3Fe1/3Mn1/3O2 as high-performance cathode materials for sodium-ion batteries. <i>Science China Materials</i> , 2017 , 60, 629-636	7.1	32
59	Hierarchical Cu doped SnSe nanoclusters as high-performance anode for sodium-ion batteries. <i>Electrochimica Acta</i> , 2018 , 282, 973-980	6.7	32
58	A novel photo-responsive organogel based on azobenzene. <i>Journal of Physical Organic Chemistry</i> , 2008 , 21, 338-343	2.1	32
57	A P2-Type Layered Superionic Conductor Ga-Doped Na Zn TeO for All-Solid-State Sodium-Ion Batteries. <i>Chemistry - A European Journal</i> , 2018 , 24, 1057-1061	4.8	32
56	A new pnictide superconductor without iron. <i>Journal of the American Chemical Society</i> , 2010 , 132, 908-9	16.4	31
55	A MetalDrganic Compound as Cathode Material with Superhigh Capacity Achieved by Reversible Cationic and Anionic Redox Chemistry for High-Energy Sodium-Ion Batteries. <i>Angewandte Chemie</i> , 2017 , 129, 6897-6901	3.6	30
54	New P2-Type Honeycomb-Layered Sodium-Ion Conductor: NaMgTeO. <i>ACS Applied Materials & Interfaces</i> , 2018 , 10, 15760-15766	9.5	30
53	Effects of Sr-site deficiency on structure and electrochemical performance in Sr 2 MgMoO 6 for solid-oxide fuel cell. <i>Journal of Power Sources</i> , 2014 , 270, 441-448	8.9	30
52	Crystal structure and encapsulation dynamics of ice II-structured neon hydrate. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 10456-61	11.5	28
51	Ultrathin and defect-rich intermetallic Pd2Sn nanosheets for efficient oxygen reduction electrocatalysis. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 15665-15669	13	28

(2012-2018)

50	Nitrogen-doped carbon coated LiNi0.6Co0.2Mn0.2O2 cathode with enhanced electrochemical performance for Li-Ion batteries. <i>Electrochimica Acta</i> , 2018 , 284, 526-533	6.7	27
49	Phase-transformed Mo4P3 nanoparticles as efficient catalysts towards lithium polysulfide conversion for lithiumBulfur battery. <i>Electrochimica Acta</i> , 2020 , 330, 135310	6.7	27
48	Porous N, B co-doped carbon nanotubes as efficient metal-free electrocatalysts for ORR and Zn-air batteries. <i>Chemical Engineering Journal</i> , 2021 , 422, 130134	14.7	27
47	Ca-doped Na2Zn2TeO6 layered sodium conductor for all-solid-state sodium-ion batteries. <i>Electrochimica Acta</i> , 2019 , 298, 121-126	6.7	25
46	Defect-free-induced Na+ disordering in electrode materials. <i>Energy and Environmental Science</i> , 2021 , 14, 3130-3140	35.4	24
45	In Situ Self-Assembly of Core-Shell Multimetal Prussian Blue Analogues for High-Performance Sodium-Ion Batteries. <i>ChemSusChem</i> , 2019 , 12, 4786-4790	8.3	23
44	Elemental selenium enables enhanced water oxidation electrocatalysis of NiFe layered double hydroxides. <i>Nanoscale</i> , 2019 , 11, 17376-17383	7.7	23
43	3D hierarchical porous Co1\(\mathbb{\text{S}}\)@C derived from a ZIF-67 single crystals self-assembling superstructure with superior pseudocapacitance. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 17248-1725	3 ¹³	23
42	High pressure-high temperature synthesis of lithium-rich Li3O(Cl, Br) and Li3\(\text{Li3D}\)Cax/2OCl anti-perovskite halides. <i>Inorganic Chemistry Communication</i> , 2014 , 48, 140-143	3.1	23
41	Crystallization-induced ultrafast Na-ion diffusion in nickel hexacyanoferrate for high-performance sodium-ion batteries. <i>Nano Energy</i> , 2020 , 67, 104250	17.1	23
40	In Situ FTIR-Assisted Synthesis of Nickel Hexacyanoferrate Cathodes for Long-Life Sodium-Ion Batteries. <i>ACS Applied Materials & Acs Applied & Acs</i>	9.5	19
39	Redox Behaviors of Ni and Cr with Different Counter Cations in Spinel Cathodes for Li-Ion Batteries. Journal of the Electrochemical Society, 2010 , 157, A770	3.9	19
38	Controllable synthesis and magnetic property of BiMn2O5 crystals. <i>Materials Research Bulletin</i> , 2008 , 43, 1702-1708	5.1	18
37	Accelerated polysulfide conversion on hierarchical porous vanadium-nitrogen-carbon for advanced lithium-sulfur batteries. <i>Nanoscale</i> , 2020 , 12, 584-590	7.7	18
36	Promoting C2+ Production from Electrochemical CO2 Reduction on Shape-Controlled Cuprous Oxide Nanocrystals with High-Index Facets. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 15223-	15229	18
35	Tungsten-Doped L10-PtCo Ultrasmall Nanoparticles as a High-Performance Fuel Cell Cathode. <i>Angewandte Chemie</i> , 2019 , 131, 15617-15623	3.6	17
34	Polymer-assisted synthesis of LiNi2/3Mn1/3O2 cathode material with enhanced electrochemical performance. <i>Journal of Alloys and Compounds</i> , 2013 , 559, 203-208	5.7	17
33	Li6La3SnMO12(M = Sb, Nb, Ta), a Family of Lithium Garnets with High Li-Ion Conductivity. <i>Journal of the Electrochemical Society</i> , 2012 , 159, A1148-A1151	3.9	17

32	Solvothermal synthesis and magnetic properties of pyrite Co1⊠FexS2 with various morphologies. <i>Materials Letters</i> , 2006 , 60, 1805-1808	3.3	17
31	Hydrochloric acid corrosion induced bifunctional free-standing NiFe hydroxide nanosheets towards high-performance alkaline seawater splitting. <i>Nanoscale</i> , 2020 , 12, 21743-21749	7.7	17
30	Novel Cerium Hexacyanoferrate(II) as Cathode Material for Sodium-Ion Batteries. <i>ACS Applied Energy Materials</i> , 2019 , 2, 187-191	6.1	17
29	Jahn Teller distortion in perovskite KCuF3 under high pressure. <i>Journal of Fluorine Chemistry</i> , 2011 , 132, 1117-1121	2.1	16
28	Two Birds with One Stone: Boosting Zinc-Ion Insertion/Extraction Kinetics and Suppressing Vanadium Dissolution of VO via La Incorporation Enable Advanced Zinc-Ion Batteries. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 38416-38424	9.5	15
27	Al doping effects on LiCrTiO4 as an anode for lithium-ion batteries. RSC Advances, 2017 , 7, 4791-4797	3.7	13
26	A new layered titanate Na2Li2Ti5O12 as a high-performance intercalation anode for sodium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 22208-22215	13	13
25	Immobilizing an organic electrode material through Interaction for high-performance Li-organic batteries. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 22398-22404	13	13
24	Regulating solvation structure to stabilize zinc anode by fastening the free water molecules with an inorganic colloidal electrolyte. <i>Nano Energy</i> , 2022 , 93, 106839	17.1	13
23	Realization of a High-Voltage and High-Rate Nickel-Rich NCM Cathode Material for LIBs by Co and Ti Dual Modification. <i>ACS Applied Materials & Discrete Samp; Interfaces</i> , 2021 , 13, 17707-17716	9.5	12
22	Highly crystalline nickel hexacyanoferrate as a long-life cathode material for sodium-ion batteries <i>RSC Advances</i> , 2020 , 10, 27033-27041	3.7	11
21	Constructing Co-N-C Catalyst via a Double Crosslinking Hydrogel Strategy for Enhanced Oxygen Reduction Catalysis in Fuel Cells. <i>Small</i> , 2021 , 17, e2100735	11	11
20	Bimetallic Co/Mo2C Nanoparticles Embedded in 3D Hierarchical N-doped Carbon Heterostructures as Highly Efficient Electrocatalysts for Water Splitting. <i>ChemCatChem</i> , 2020 , 12, 3737-3745	5.2	10
19	Unusual structural evolution in KCuF3 at high temperatures by neutron powder diffraction. <i>Physical Review B</i> , 2013 , 87,	3.3	10
18	Dual redox-active copper hexacyanoferrate nanosheets as cathode materials for advanced sodium-ion batteries. <i>Energy Storage Materials</i> , 2020 , 33, 432-441	19.4	10
17	Enabling Anionic Redox Stability of P2-Na Li Mn O by Mg Substitution Advanced Materials, 2021 , e210.	5404	9
16	Local Structural Changes and Inductive Effects on Ion Conduction in Antiperovskite Solid Electrolytes. <i>Chemistry of Materials</i> , 2020 , 32, 8827-8835	9.6	8
15	Redox potential regulation toward suppressing hydrogen evolution in aqueous sodium-ion batteries: Na1.5Ti1.5Fe0.5(PO4)3. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 24953-24963	13	8

LIST OF PUBLICATIONS

14	N,S-Co-Doped Porous Carbon Nanofiber Films Derived from Fullerenes (C) as Efficient Electrocatalysts for Oxygen Reduction and a Zn-Air Battery. <i>Chemistry - A European Journal</i> , 2021 , 27, 1423-1429	4.8	8
13	Electron density modulation of MoP by rare earth metal as highly efficient electrocatalysts for pH-universal hydrogen evolution reaction. <i>Applied Catalysis B: Environmental</i> , 2021 , 299, 120657	21.8	8
12	Core@shell Sb@Sb2O3 nanoparticles anchored on 3D nitrogen-doped carbon nanosheets as advanced anode materials for Li-ion batteries. <i>Nanoscale Advances</i> , 2020 , 2, 5578-5583	5.1	7
11	An effective dual-modification strategy to enhance the performance of LiNiCoMnO cathode for Li-ion batteries. <i>Nanoscale</i> , 2021 , 13, 4670-4677	7.7	7
10	[email[protected] Structured [email[protected] Carbon as a Sulfur Host and Polysulfide Conversion Booster for Lithium/Sodium Sulfur Batteries. <i>ACS Applied Energy Materials</i> , 2021 , 4, 3487-3494	6.1	6
9	Magnetic origin of phase stability in cubic EMoN. <i>Applied Physics Letters</i> , 2018 , 113, 221901	3.4	6
8	Local Structures of Soft Carbon and Electrochemical Performance of Potassium-Ion Batteries. <i>ACS Applied Materials & District Materials</i>	9.5	5
7	A High Rate and Stable Hybrid Li/Na-Ion Battery Based on a Hydrated Molten Inorganic Salt Electrolyte. <i>Small</i> , 2021 , 17, e2101650	11	4
6	Sodium Ion Batteries: A Dual-Insertion Type Sodium-Ion Full Cell Based on High-Quality Ternary-Metal Prussian Blue Analogs (Adv. Energy Mater. 11/2018). <i>Advanced Energy Materials</i> , 2018 , 8, 1870048	21.8	3
5	Hard carbon spheres prepared by a modified StBer method as anode material for high-performance potassium-ion batteries <i>RSC Advances</i> , 2021 , 11, 14883-14890	3.7	2
4	Defect-rich N/S-co-doped porous hollow carbon nanospheres derived from fullerenes as efficient electrocatalysts for the oxygen-reduction reaction and ZnBir batteries. <i>Materials Chemistry Frontiers</i> ,	7.8	2
3	Defective porous carbon microrods derived from fullerenes (C) as high-performance electrocatalysts for the oxygen reduction reaction <i>Nanoscale</i> , 2021 ,	7.7	1
2	Construction of an N-Decorated Carbon-Encapsulated WC/WP Heterostructure as an Efficient Electrocatalyst for Hydrogen Evolution in Both Alkaline and Acidic Media. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 53955-53964	9.5	1
1	Boosting Li/Na storage performance of graphite by defect engineering <i>RSC Advances</i> , 2021 , 11, 22297-	 3 <i>2</i> 304	1