List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6945548/publications.pdf Version: 2024-02-01



ΙΙΔΝΙΤΛΟ Τ ΗΔΝ

| #  | Article                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Nitrogen-Doped Graphene-Rich Catalysts Derived from Heteroatom Polymers for Oxygen Reduction in<br>Nonaqueous Lithium–O <sub>2</sub> Battery Cathodes. ACS Nano, 2012, 6, 9764-9776.                                           | 7.3  | 486       |
| 2  | Superionic Conductivity in Lithium-Rich Anti-Perovskites. Journal of the American Chemical Society, 2012, 134, 15042-15047.                                                                                                    | 6.6  | 458       |
| 3  | Routes to High Energy Cathodes of Sodiumâ€ion Batteries. Advanced Energy Materials, 2016, 6, 1501727.                                                                                                                          | 10.2 | 408       |
| 4  | New Anode Framework for Rechargeable Lithium Batteries. Chemistry of Materials, 2011, 23, 2027-2029.                                                                                                                           | 3.2  | 360       |
| 5  | Tunable Synthesis of Bismuth Ferrites with Various Morphologies. Advanced Materials, 2006, 18, 2145-2148.                                                                                                                      | 11.1 | 283       |
| 6  | NiFe (Oxy) Hydroxides Derived from NiFe Disulfides as an Efficient Oxygen Evolution Catalyst for<br>Rechargeable Zn–Air Batteries: The Effect of Surface S Residues. Advanced Materials, 2018, 30, e1800757.                   | 11.1 | 219       |
| 7  | High-performance single atom bifunctional oxygen catalysts derived from ZIF-67 superstructures.<br>Nano Energy, 2019, 61, 245-250.                                                                                             | 8.2  | 205       |
| 8  | 3-V Full Cell Performance of Anode Framework TiNb <sub>2</sub> O <sub>7</sub> /Spinel<br>LiNi <sub>0.5</sub> Mn <sub>1.5</sub> O <sub>4</sub> . Chemistry of Materials, 2011, 23, 3404-3407.                                   | 3.2  | 198       |
| 9  | Inhibition of Manganese Dissolution in Mn <sub>2</sub> O <sub>3</sub> Cathode with Controllable<br>Ni <sup>2+</sup> Incorporation for Highâ€Performance Zinc Ion Battery. Advanced Functional<br>Materials, 2021, 31, 2009412. | 7.8  | 176       |
| 10 | Sonocatalytic degradation of methyl orange in the presence of TiO2 catalysts and catalytic activity comparison of rutile and anatase. Ultrasonics Sonochemistry, 2005, 12, 331-337.                                            | 3.8  | 173       |
| 11 | Ultrasound Switch and Thermal Selfâ€Repair of Morphology and Surface Wettability in a<br>Cholesterolâ€Based Selfâ€Assembly System. Angewandte Chemie - International Edition, 2008, 47, 1063-1067.                             | 7.2  | 163       |
| 12 | Synthesis, Crystal Structure, and Elastic Properties of Novel Tungsten Nitrides. Chemistry of Materials, 2012, 24, 3023-3028.                                                                                                  | 3.2  | 154       |
| 13 | Tungstenâ€Doped L1 <sub>0</sub> â€PtCo Ultrasmall Nanoparticles as a Highâ€Performance Fuel Cell<br>Cathode. Angewandte Chemie - International Edition, 2019, 58, 15471-15477.                                                 | 7.2  | 150       |
| 14 | Metal–Organic Framework Derived Honeycomb Co <sub>9</sub> S <sub>8</sub> @C Composites for<br>Highâ€Performance Supercapacitors. Advanced Energy Materials, 2018, 8, 1801080.                                                  | 10.2 | 147       |
| 15 | Preparation and Study of Polyacryamide-Stabilized Silver Nanoparticles through a One-Pot Process.<br>Journal of Physical Chemistry B, 2006, 110, 11224-11231.                                                                  | 1.2  | 144       |
| 16 | A Dualâ€Insertion Type Sodiumâ€Ion Full Cell Based on Highâ€Quality Ternaryâ€Metal Prussian Blue Analogs.<br>Advanced Energy Materials, 2018, 8, 1702856.                                                                      | 10.2 | 143       |
| 17 | Low-Cost and High-Performance Hard Carbon Anode Materials for Sodium-Ion Batteries. ACS Omega, 2017, 2, 1687-1695.                                                                                                             | 1.6  | 142       |
| 18 | lonic distribution and conductivity in lithium garnet Li7La3Zr2O12. Journal of Power Sources, 2012, 209, 278-281.                                                                                                              | 4.0  | 141       |

| #  | Article                                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Rare Earth Ionâ€Ðoped CsPbBr <sub>3</sub> Nanocrystals. Advanced Optical Materials, 2018, 6, 1700864.                                                                                                                                          | 3.6  | 130       |
| 20 | High valence Mo-doped Na <sub>3</sub> V <sub>2</sub> (PO <sub>4</sub> ) <sub>3</sub> /C as a high rate<br>and stable cycle-life cathode for sodium battery. Journal of Materials Chemistry A, 2018, 6, 1390-1396.                              | 5.2  | 129       |
| 21 | Subâ€6 nm Fully Ordered <i>L</i> 1 <sub>0</sub> â€Pt–Ni–Co Nanoparticles Enhance Oxygen Reduction via<br>Co Doping Induced Ferromagnetism Enhancement and Optimized Surface Strain. Advanced Energy<br>Materials, 2019, 9, 1803771.            | 10.2 | 127       |
| 22 | Bifunctional Atomically Dispersed Mo–N <sub>2</sub> /C Nanosheets Boost Lithium Sulfide<br>Deposition/Decomposition for Stable Lithium–Sulfur Batteries. ACS Nano, 2020, 14, 10115-10126.                                                      | 7.3  | 106       |
| 23 | Highâ€Performance Direct Methanol Fuel Cells with Preciousâ€Metalâ€Free Cathode. Advanced Science, 2016, 3, 1600140.                                                                                                                           | 5.6  | 105       |
| 24 | Amorphous Co–Fe–P nanospheres for efficient water oxidation. Journal of Materials Chemistry A,<br>2017, 5, 25378-25384.                                                                                                                        | 5.2  | 100       |
| 25 | Superior Na-ion storage achieved by Ti substitution in Na3V2(PO4)3. Energy Storage Materials, 2018, 15, 108-115.                                                                                                                               | 9.5  | 100       |
| 26 | Porous N, B co-doped carbon nanotubes as efficient metal-free electrocatalysts for ORR and Zn-air<br>batteries. Chemical Engineering Journal, 2021, 422, 130134.                                                                               | 6.6  | 98        |
| 27 | Experimental visualization of lithium conduction pathways in garnet-type Li7La3Zr2O12. Chemical Communications, 2012, 48, 9840.                                                                                                                | 2.2  | 95        |
| 28 | Structure Distortion Induced Monoclinic Nickel Hexacyanoferrate as Highâ€Performance Cathode for<br>Naâ€ion Batteries. Advanced Energy Materials, 2019, 9, 1803158.                                                                            | 10.2 | 93        |
| 29 | Atomic‣evel Feâ€N  Coupled with Fe <sub>3</sub> Câ€Fe Nanocomposites in Carbon Matrixes as<br>Highâ€Efficiency Bifunctional Oxygen Catalysts. Small, 2020, 16, e1906057.                                                                       | 5.2  | 90        |
| 30 | Regulating solvation structure to stabilize zinc anode by fastening the free water molecules with an inorganic colloidal electrolyte. Nano Energy, 2022, 93, 106839.                                                                           | 8.2  | 88        |
| 31 | High-Performance Hard Carbon Anode: Tunable Local Structures and Sodium Storage Mechanism. ACS<br>Applied Energy Materials, 2018, 1, 2295-2305.                                                                                                | 2.5  | 87        |
| 32 | A Metal–Organic Compound as Cathode Material with Superhigh Capacity Achieved by Reversible<br>Cationic and Anionic Redox Chemistry for Highâ€Energy Sodiumâ€Ion Batteries. Angewandte Chemie -<br>International Edition, 2017, 56, 6793-6797. | 7.2  | 85        |
| 33 | Lithium Ion Intercalation Performance of Niobium Oxides: KNb <sub>5</sub> O <sub>13</sub> and<br>K <sub>6</sub> Nb <sub>10.8</sub> O <sub>30</sub> . Chemistry of Materials, 2009, 21, 4753-4755.                                              | 3.2  | 83        |
| 34 | Thermally-induced reversible structural isomerization in colloidal semiconductor CdS magic-size clusters. Nature Communications, 2018, 9, 2499.                                                                                                | 5.8  | 79        |
| 35 | Enhanced Oxygen Evolution Reaction Activity by Encapsulating NiFe Alloy Nanoparticles in<br>Nitrogen-Doped Carbon Nanofibers. ACS Applied Materials & Interfaces, 2020, 12, 31503-31513.                                                       | 4.0  | 78        |
| 36 | Graphene-Roll-Wrapped Prussian Blue Nanospheres as a High-Performance Binder-Free Cathode for<br>Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 25317-25322.                                                               | 4.0  | 75        |

| #  | Article                                                                                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Efficient entrapment and catalytic conversion of lithium polysulfides on hollow metal oxide submicro-spheres as lithium–sulfur battery cathodes. Nanoscale, 2018, 10, 5634-5641.                                                                                                        | 2.8  | 74        |
| 38 | Enhancing Sodium-Ion Storage Behaviors in TiNb <sub>2</sub> O <sub>7</sub> by Mechanical Ball<br>Milling. ACS Applied Materials & Interfaces, 2017, 9, 8696-8703.                                                                                                                       | 4.0  | 70        |
| 39 | Two Birds with One Stone: Boosting Zinc-Ion Insertion/Extraction Kinetics and Suppressing Vanadium<br>Dissolution of V <sub>2</sub> O <sub>5</sub> via La <sup>3+</sup> Incorporation Enable Advanced<br>Zinc-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 38416-38424. | 4.0  | 70        |
| 40 | F-doped O3-NaNi1/3Fe1/3Mn1/3O2 as high-performance cathode materials for sodium-ion batteries.<br>Science China Materials, 2017, 60, 629-636.                                                                                                                                           | 3.5  | 64        |
| 41 | Realization of a High-Voltage and High-Rate Nickel-Rich NCM Cathode Material for LIBs by Co and Ti<br>Dual Modification. ACS Applied Materials & Interfaces, 2021, 13, 17707-17716.                                                                                                     | 4.0  | 64        |
| 42 | Defect-free-induced Na <sup>+</sup> disordering in electrode materials. Energy and Environmental Science, 2021, 14, 3130-3140.                                                                                                                                                          | 15.6 | 62        |
| 43 | Selective Synthesis of TbMn2O5 Nanorods and TbMnO3 Micron Crystals. Journal of the American Chemical Society, 2006, 128, 14454-14455.                                                                                                                                                   | 6.6  | 58        |
| 44 | Electron density modulation of MoP by rare earth metal as highly efficient electrocatalysts for pH-universal hydrogen evolution reaction. Applied Catalysis B: Environmental, 2021, 299, 120657.                                                                                        | 10.8 | 57        |
| 45 | Ultrathin and defect-rich intermetallic Pd <sub>2</sub> Sn nanosheets for efficient oxygen reduction electrocatalysis. Journal of Materials Chemistry A, 2020, 8, 15665-15669.                                                                                                          | 5.2  | 54        |
| 46 | Structure, morphology, and cathode performance of Li1â^'x[Ni0.5Mn1.5]O4 prepared by coprecipitation with oxalic acid. Journal of Power Sources, 2010, 195, 2918-2923.                                                                                                                   | 4.0  | 53        |
| 47 | Porous NaTi <sub>2</sub> (PO <sub>4</sub> ) <sub>3</sub> /C Hierarchical Nanofibers for Ultrafast<br>Electrochemical Energy Storage. ACS Applied Materials & Interfaces, 2018, 10, 27039-27046.                                                                                         | 4.0  | 52        |
| 48 | F-Doped NaTi <sub>2</sub> (PO <sub>4</sub> ) <sub>3</sub> /C Nanocomposite as a High-Performance<br>Anode for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 3116-3124.                                                                                            | 4.0  | 52        |
| 49 | Crystallization-induced ultrafast Na-ion diffusion in nickel hexacyanoferrate for high-performance sodium-ion batteries. Nano Energy, 2020, 67, 104250.                                                                                                                                 | 8.2  | 52        |
| 50 | Promoting C <sub>2+</sub> Production from Electrochemical CO <sub>2</sub> Reduction on<br>Shape-Controlled Cuprous Oxide Nanocrystals with High-Index Facets. ACS Sustainable Chemistry and<br>Engineering, 2020, 8, 15223-15229.                                                       | 3.2  | 51        |
| 51 | Hierarchical Cu doped SnSe nanoclusters as high-performance anode for sodium-ion batteries.<br>Electrochimica Acta, 2018, 282, 973-980.                                                                                                                                                 | 2.6  | 50        |
| 52 | Access to M[sup 3+]/M[sup 2+] Redox Couples in Layered LiMS[sub 2] Sulfides (M=Ti,â€,V,â€,Cr) as Anodes for<br>Li-Ion Battery. Journal of the Electrochemical Society, 2009, 156, A703.                                                                                                 | 1.3  | 46        |
| 53 | Elemental selenium enables enhanced water oxidation electrocatalysis of NiFe layered double<br>hydroxides. Nanoscale, 2019, 11, 17376-17383.                                                                                                                                            | 2.8  | 46        |
| 54 | Enabling Anionic Redox Stability of<br>P2â€Na <sub>5/6</sub> Li <sub>1/4</sub> Mn <sub>3/4</sub> O <sub>2</sub> by Mg Substitution. Advanced<br>Materials, 2022, 34, e2105404.                                                                                                          | 11.1 | 46        |

| #  | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Inâ€Situ Selfâ€Assembly of Core–Shell Multimetal Prussian Blue Analogues for Highâ€Performance<br>Sodiumâ€lon Batteries. ChemSusChem, 2019, 12, 4786-4790.                                                              | 3.6 | 45        |
| 56 | New P2-Type Honeycomb-Layered Sodium-Ion Conductor:<br>Na <sub>2</sub> Mg <sub>2</sub> TeO <sub>6</sub> . ACS Applied Materials & Interfaces, 2018, 10,<br>15760-15766.                                                 | 4.0 | 44        |
| 57 | Nitrogen-doped carbon coated LiNi0.6Co0.2Mn0.2O2 cathode with enhanced electrochemical performance for Li-Ion batteries. Electrochimica Acta, 2018, 284, 526-533.                                                       | 2.6 | 44        |
| 58 | Phase-transformed Mo4P3 nanoparticles as efficient catalysts towards lithium polysulfide conversion for lithium–sulfur battery. Electrochimica Acta, 2020, 330, 135310.                                                 | 2.6 | 44        |
| 59 | Synthesis and magnetic property of submicron Bi2Fe4O9. Journal of Crystal Growth, 2006, 294, 469-473.                                                                                                                   | 0.7 | 43        |
| 60 | Hydrochloric acid corrosion induced bifunctional free-standing NiFe hydroxide nanosheets towards<br>high-performance alkaline seawater splitting. Nanoscale, 2020, 12, 21743-21749.                                     | 2.8 | 43        |
| 61 | Dual redox-active copper hexacyanoferrate nanosheets as cathode materials for advanced sodium-ion batteries. Energy Storage Materials, 2020, 33, 432-441.                                                               | 9.5 | 43        |
| 62 | A P2â€Type Layered Superionic Conductor Gaâ€Doped Na <sub>2</sub> Zn <sub>2</sub> TeO <sub>6</sub> for<br>Allâ€Solidâ€State Sodiumâ€Ion Batteries. Chemistry - A European Journal, 2018, 24, 1057-1061.                 | 1.7 | 42        |
| 63 | Ca-doped Na2Zn2TeO6 layered sodium conductor for all-solid-state sodium-ion batteries.<br>Electrochimica Acta, 2019, 298, 121-126.                                                                                      | 2.6 | 40        |
| 64 | In Situ FTIR-Assisted Synthesis of Nickel Hexacyanoferrate Cathodes for Long-Life Sodium-Ion Batteries.<br>ACS Applied Materials & Interfaces, 2019, 11, 29985-29992.                                                   | 4.0 | 39        |
| 65 | Effects of Sr-site deficiency on structure and electrochemical performance in Sr 2 MgMoO 6 for solid-oxide fuel cell. Journal of Power Sources, 2014, 270, 441-448.                                                     | 4.0 | 38        |
| 66 | A novel photoâ€responsive organogel based on azobenzene. Journal of Physical Organic Chemistry,<br>2008, 21, 338-343.                                                                                                   | 0.9 | 37        |
| 67 | Crystal structure and encapsulation dynamics of ice II-structured neon hydrate. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10456-10461.                                | 3.3 | 36        |
| 68 | A Metal–Organic Compound as Cathode Material with Superhigh Capacity Achieved by Reversible<br>Cationic and Anionic Redox Chemistry for Highâ€Energy Sodiumâ€Ion Batteries. Angewandte Chemie, 2017,<br>129, 6897-6901. | 1.6 | 36        |
| 69 | A New Pnictide Superconductor without Iron. Journal of the American Chemical Society, 2010, 132, 908-909.                                                                                                               | 6.6 | 35        |
| 70 | 3D hierarchical porous Co <sub>1â^'x</sub> S@C derived from a ZIF-67 single crystals self-assembling<br>superstructure with superior pseudocapacitance. Journal of Materials Chemistry A, 2019, 7, 17248-17253.         | 5.2 | 34        |
| 71 | High pressure-high temperature synthesis of lithium-rich Li3O(Cl, Br) and Li3â^'xCax/2OCl<br>anti-perovskite halides. Inorganic Chemistry Communication, 2014, 48, 140-143.                                             | 1.8 | 33        |
| 72 | Highly crystalline nickel hexacyanoferrate as a long-life cathode material for sodium-ion batteries.<br>RSC Advances, 2020, 10, 27033-27041.                                                                            | 1.7 | 31        |

| #  | Article                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Tungstenâ€Doped L1 0 â€PtCo Ultrasmall Nanoparticles as a Highâ€Performance Fuel Cell Cathode.<br>Angewandte Chemie, 2019, 131, 15617-15623.                                                                                                      | 1.6 | 30        |
| 74 | Constructing Co–N–C Catalyst via a Double Crosslinking Hydrogel Strategy for Enhanced Oxygen<br>Reduction Catalysis in Fuel Cells. Small, 2021, 17, e2100735.                                                                                     | 5.2 | 29        |
| 75 | Novel Cerium Hexacyanoferrate(II) as Cathode Material for Sodium-Ion Batteries. ACS Applied Energy<br>Materials, 2019, 2, 187-191.                                                                                                                | 2.5 | 26        |
| 76 | Accelerated polysulfide conversion on hierarchical porous vanadium–nitrogen–carbon for advanced<br>lithium–sulfur batteries. Nanoscale, 2020, 12, 584-590.                                                                                        | 2.8 | 26        |
| 77 | Bimetallic Co/Mo <sub>2</sub> C Nanoparticles Embedded in 3D Hierarchical Nâ€doped Carbon<br>Heterostructures as Highly Efficient Electrocatalysts for Water Splitting. ChemCatChem, 2020, 12,<br>3737-3745.                                      | 1.8 | 26        |
| 78 | Jahn–Teller distortion in perovskite KCuF3 under high pressure. Journal of Fluorine Chemistry, 2011,<br>132, 1117-1121.                                                                                                                           | 0.9 | 23        |
| 79 | Immobilizing an organic electrode material through π–π interaction for high-performance Li-organic<br>batteries. Journal of Materials Chemistry A, 2019, 7, 22398-22404.                                                                          | 5.2 | 23        |
| 80 | N,Sâ€Coâ€Doped Porous Carbon Nanofiber Films Derived from Fullerenes (C <sub>60</sub> ) as Efficient<br>Electrocatalysts for Oxygen Reduction and a Zn–Air Battery. Chemistry - A European Journal, 2021, 27,<br>1423-1429.                       | 1.7 | 22        |
| 81 | Solvothermal synthesis and magnetic properties of pyrite Co1â^'xFexS2 with various morphologies.<br>Materials Letters, 2006, 60, 1805-1808.                                                                                                       | 1.3 | 20        |
| 82 | Controllable synthesis and magnetic property of BiMn2O5 crystals. Materials Research Bulletin, 2008, 43, 1702-1708.                                                                                                                               | 2.7 | 20        |
| 83 | Redox Behaviors of Ni and Cr with Different Counter Cations in Spinel Cathodes for Li-Ion Batteries.<br>Journal of the Electrochemical Society, 2010, 157, A770.                                                                                  | 1.3 | 20        |
| 84 | Polymer-assisted synthesis of LiNi2/3Mn1/3O2 cathode material with enhanced electrochemical performance. Journal of Alloys and Compounds, 2013, 559, 203-208.                                                                                     | 2.8 | 20        |
| 85 | Construction of an N-Decorated Carbon-Encapsulated W <sub>2</sub> C/WP Heterostructure as an<br>Efficient Electrocatalyst for Hydrogen Evolution in Both Alkaline and Acidic Media. ACS Applied<br>Materials & Interfaces, 2021, 13, 53955-53964. | 4.0 | 20        |
| 86 | Li <sub>6</sub> La <sub>3</sub> SnMO <sub>12</sub> (M = Sb, Nb, Ta), a Family of Lithium Garnets with<br>High Li-Ion Conductivity. Journal of the Electrochemical Society, 2012, 159, A1148-A1151.                                                | 1.3 | 19        |
| 87 | Local Structural Changes and Inductive Effects on Ion Conduction in Antiperovskite Solid Electrolytes. Chemistry of Materials, 2020, 32, 8827-8835.                                                                                               | 3.2 | 19        |
| 88 | Correlation between Potassium-Ion Storage Mechanism and Local Structural Evolution in Hard<br>Carbon Materials. Chemistry of Materials, 2022, 34, 4202-4211.                                                                                      | 3.2 | 19        |
| 89 | A new layered titanate Na <sub>2</sub> Li <sub>2</sub> Ti <sub>5</sub> O <sub>12</sub> as a<br>high-performance intercalation anode for sodium-ion batteries. Journal of Materials Chemistry A,<br>2017, 5, 22208-22215.                          | 5.2 | 18        |
| 90 | An effective dual-modification strategy to enhance the performance of<br>LiNi <sub>0.6</sub> Co <sub>0.2</sub> Mn <sub>0.2</sub> O <sub>2</sub> cathode for Li-ion batteries.<br>Nanoscale, 2021, 13, 4670-4677.                                  | 2.8 | 17        |

| #   | Article                                                                                                                                                                                                                                                                                | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Local Structures of Soft Carbon and Electrochemical Performance of Potassium-Ion Batteries. ACS<br>Applied Materials & Interfaces, 2021, 13, 28261-28269.                                                                                                                              | 4.0  | 17        |
| 92  | Al doping effects on LiCrTiO <sub>4</sub> as an anode for lithium-ion batteries. RSC Advances, 2017, 7, 4791-4797.                                                                                                                                                                     | 1.7  | 16        |
| 93  | Yolk@Shell Structured MnS@Nitrogen-Doped Carbon as a Sulfur Host and Polysulfide Conversion<br>Booster for Lithium/Sodium Sulfur Batteries. ACS Applied Energy Materials, 2021, 4, 3487-3494.                                                                                          | 2.5  | 16        |
| 94  | Engineering a High-Voltage Durable Cathode/Electrolyte Interface for All-Solid-State Lithium Metal<br>Batteries via <i>In Situ</i> Electropolymerization. ACS Applied Materials & Interfaces, 2022, 14,<br>21018-21027.                                                                | 4.0  | 15        |
| 95  | Molybdenumâ€doped ordered L1 <sub>0</sub> â€PdZn nanosheets for enhanced oxygen reduction<br>electrocatalysis. SusMat, 2022, 2, 347-356.                                                                                                                                               | 7.8  | 13        |
| 96  | Unusual structural evolution in KCuF <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"&gt;<mml:msub><mml:mrow></mml:mrow><mml:mn>3</mml:mn></mml:msub></mml:math> at high<br>temperatures by neutron powder diffraction. Physical Review B, 2013, 87, . | 1.1  | 12        |
| 97  | A High Rate and Stable Hybrid Li/Naâ€lon Battery Based on a Hydrated Molten Inorganic Salt Electrolyte.<br>Small, 2021, 17, e2101650.                                                                                                                                                  | 5.2  | 12        |
| 98  | Defect-rich N/S-co-doped porous hollow carbon nanospheres derived from fullerenes as efficient<br>electrocatalysts for the oxygen-reduction reaction and Zn–air batteries. Materials Chemistry<br>Frontiers, 2021, 5, 7873-7882.                                                       | 3.2  | 12        |
| 99  | Redox potential regulation toward suppressing hydrogen evolution in aqueous sodium-ion batteries:<br>Na <sub>1.5</sub> Ti <sub>1.5</sub> Fe <sub>0.5</sub> (PO <sub>4</sub> ) <sub>3</sub> . Journal of<br>Materials Chemistry A, 2019, 7, 24953-24963.                                | 5.2  | 10        |
| 100 | Protrusionâ€Rich Cu@NiRu Core@shell Nanotubes for Efficient Alkaline Hydrogen Evolution<br>Electrocatalysis. Small, 2022, 18, .                                                                                                                                                        | 5.2  | 10        |
| 101 | Core@shell Sb@Sb <sub>2</sub> O <sub>3</sub> nanoparticles anchored on 3D nitrogen-doped carbon<br>nanosheets as advanced anode materials for Li-ion batteries. Nanoscale Advances, 2020, 2, 5578-5583.                                                                                | 2.2  | 9         |
| 102 | Defective porous carbon microrods derived from fullerenes (C <sub>70</sub> ) as high-performance electrocatalysts for the oxygen reduction reaction. Nanoscale, 2022, 14, 473-481.                                                                                                     | 2.8  | 8         |
| 103 | Magnetic origin of phase stability in cubic Î <sup>3</sup> -MoN. Applied Physics Letters, 2018, 113, 221901.                                                                                                                                                                           | 1.5  | 6         |
| 104 | Hard carbon spheres prepared by a modified Stöber method as anode material for high-performance potassium-ion batteries. RSC Advances, 2021, 11, 14883-14890.                                                                                                                          | 1.7  | 6         |
| 105 | Tailoring Electrolytes to Enable Low-Temperature Cycling of Ni-Rich NCM Cathode Materials for Li-Ion<br>Batteries. ACS Applied Energy Materials, 2022, 5, 5867-5874.                                                                                                                   | 2.5  | 4         |
| 106 | Sodium Ion Batteries: A Dual-Insertion Type Sodium-Ion Full Cell Based on High-Quality Ternary-Metal<br>Prussian Blue Analogs (Adv. Energy Mater. 11/2018). Advanced Energy Materials, 2018, 8, 1870048.                                                                               | 10.2 | 3         |
| 107 | Boosting Li/Na storage performance of graphite by defect engineering. RSC Advances, 2021, 11, 22297-22304.                                                                                                                                                                             | 1.7  | 3         |
| 108 | Seamlessly Merging the Capacity of P into Sb at Same Voltage with Maintained Superior Cycle Stability<br>and Lowâ€ŧemperature Performance for Liâ€ion Batteries. Energy and Environmental Materials, 2023, 6, .                                                                        | 7.3  | 3         |

| #   | Article                                                                                                                                                                   | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | "Room Temperature Molten Salt―Based Polymer Electrolyte Enabling a High-Rate and High-Thermal<br>Stability Hybrid Li/Na-Ion Battery. ACS Applied Energy Materials, 0, , . | 2.5 | 3         |