Magdalena Krawczyk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6945522/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Determination of antioxidant activity, rutin, quercetin, phenolic acids and trace elements in tea infusions: Influence of citric acid addition on extraction of metals. Journal of Food Composition and Analysis, 2015, 40, 70-77.	1.9	93
2	Kraft lignin/silica–AgNPs as a functional material with antibacterial activity. Colloids and Surfaces B: Biointerfaces, 2015, 134, 220-228.	2.5	90
3	Multiwalled carbon nanotubes as solid sorbent in dispersive micro solid-phase extraction for the sequential determination of cadmium and lead in water samples. Microchemical Journal, 2016, 126, 296-301.	2.3	87
4	Determination of total antimony and inorganic antimony species by hydride generation in situ trapping flame atomic absorption spectrometry: a new way to (ultra)trace speciation analysis. Journal of Analytical Atomic Spectrometry, 2008, 23, 43-53.	1.6	46
5	Determination of tellurium by hydride generation with in situ trapping flame atomic absorption spectrometry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2007, 62, 309-316.	1.5	45
6	Ultrasound-assisted dispersive micro solid-phase extraction with nano-TiO2 as adsorbent for the determination of mercury species. Talanta, 2016, 161, 384-391.	2.9	45
7	Determination of cadmium and lead in reference materials by volatile species generation with in situ trapping flame atomic absorption spectrometry. Microchemical Journal, 2006, 83, 17-23.	2.3	36
8	Silver nanoparticles as a solid sorbent in ultrasound-assisted dispersive micro solid-phase extraction for the atomic absorption spectrometric determination of mercury in water samples. Journal of Analytical Atomic Spectrometry, 2015, 30, 2353-2358.	1.6	36
9	Application of dendrimer modified halloysite nanotubes as a new sorbent for ultrasound-assisted dispersive micro-solid phase extraction and sequential determination of cadmium and lead in water samples. Journal of Analytical Atomic Spectrometry, 2016, 31, 1505-1514.	1.6	33
10	Determination of macro and trace elements in multivitamin dietary supplements by high-resolution continuum source graphite furnace atomic absorption spectrometry with slurry sampling. Journal of Pharmaceutical and Biomedical Analysis, 2014, 88, 377-384.	1.4	31
11	ZnO nanoparticles as an adsorbent in ultrasound-assisted dispersive micro solid-phase extraction combined with high-resolution continuum source electrothermal atomic absorption spectrometry for determination of trace germanium in food samples. Microchemical Journal, 2017, 132, 136-142.	2.3	27
12	On-line Hyphenation of Hydride Generation with in situ Trapping Flame Atomic Absorption Spectrometry for Arsenic and Selenium Determination. Analytical Sciences, 2006, 22, 249-253.	0.8	26
13	Selenium in Gluten-free Products. Plant Foods for Human Nutrition, 2015, 70, 128-134.	1.4	22
14	Sequential multi-element determination of iron and zinc in water samples by high-resolution continuum source graphite furnace atomic absorption spectrometry after column solid-phase extraction onto multiwalled carbon nanotubes. Microchemical Journal, 2014, 117, 138-143.	2.3	21
15	Hydride generation-in situ trapping-flame atomic absorption spectrometry hybridization for indium and thallium determination. Journal of the Brazilian Chemical Society, 2007, 18, .	0.6	20
16	Determination of Selenium in Food Samples by High-Resolution Continuum Source Atomic Absorption Spectrometry After Preconcentration on Halloysite Nanotubes Using Ultrasound-Assisted Dispersive Micro Solid-Phase Extraction. Food Analytical Methods, 2019, 12, 128-135.	1.3	20
17	Determination of Germanium and Tin and Inorganic Tin Species by Hydride Generation in Situ Trapping Flame Atomic Absorption Spectrometry. Analytical Letters, 2010, 43, 2543-2562.	1.0	19
18	Halloysite nanotubes as a solid sorbent in ultrasound-assisted dispersive micro solid-phase extraction for the determination of bismuth in water samples using high-resolution continuum source graphite-furnace atomic absorption spectrometry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2017, 129, 21-27.	1.5	15

#	Article	IF	CITATIONS
19	Determination of fluorine in herbs and water samples by molecular absorption spectrometry after preconcentration on nano-TiO2 using ultrasound-assisted dispersive micro solid phase extraction. Analytical and Bioanalytical Chemistry, 2017, 409, 6439-6449.	1.9	12
20	Sequential determination of gallium, indium, and thallium in environmental samples after preconcentration on halloysite nanotubes using ultrasound-assisted dispersive micro solid-phase extraction. New Journal of Chemistry, 2018, 42, 15444-15452.	1.4	11
21	Determination of nickel by chemical vapor generation in situ trapping flame AAS. Open Chemistry, 2011, 9, 648-659.	1.0	9
22	Solid-phase extraction with multiwalled carbon nanotubes prior to photochemical generation of cadmium coupled to high-resolution continuum source atomic absorption spectrometry. Journal of Analytical Atomic Spectrometry, 2014, 29, 2388-2397.	1.6	8
23	Low cost adsorbents in ultrasound-assisted dispersive micro solid-phase extraction for simultaneous determination of indium and nickel by high-resolution continuum source graphite furnace atomic absorption spectrometry in soils and sediments. Analytical Methods, 2018, 10, 2681-2690.	1.3	6
24	Determination of Silver by Chemical Vapor Generation with In Situ Trapping Flame Atomic Absorption Spectrometry. Spectroscopy Letters, 2012, 45, 487-499.	0.5	3
25	Speciation Analysis of Food Products. Food Bioactive Ingredients, 2021, , 309-344.	0.3	2
26	Determination of Gold by High-Resolution Continuum Source Atomic Absorption Spectrometry with Chemical Vapor Generation. Journal of the Brazilian Chemical Society, 2013, , .	0.6	0