List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6944960/publications.pdf Version: 2024-02-01

MADELIS PEIHED

#	Article	IF	CITATIONS
1	MOLCAS 7: The Next Generation. Journal of Computational Chemistry, 2010, 31, 224-247.	1.5	1,485
2	<scp>Molcas</scp> 8: New capabilities for multiconfigurational quantum chemical calculations across the periodic table. Journal of Computational Chemistry, 2016, 37, 506-541.	1.5	1,317
3	Reparameterization of hybrid functionals based on energy differences of states of different multiplicity. Theoretical Chemistry Accounts, 2001, 107, 48-55.	0.5	1,240
4	OpenMolcas: From Source Code to Insight. Journal of Chemical Theory and Computation, 2019, 15, 5925-5964.	2.3	661
5	The generalized Douglas–Kroll transformation. Journal of Chemical Physics, 2002, 117, 9215-9226.	1.2	638
6	Exact decoupling of the Dirac Hamiltonian. II. The generalized Douglas–Kroll–Hess transformation up to arbitrary order. Journal of Chemical Physics, 2004, 121, 10945.	1.2	538
7	Assertion and validation of the performance of the B3LYPâ<† functional for the first transition metal row and the G2 test set. Journal of Chemical Physics, 2002, 117, 4729-4737.	1.2	534
8	Quantum chemical calculation of vibrational spectra of large molecules?Raman and IR spectra for Buckminsterfullerene. Journal of Computational Chemistry, 2002, 23, 895-910.	1.5	506
9	Exact decoupling of the Dirac Hamiltonian. I. General theory. Journal of Chemical Physics, 2004, 121, 2037-2047.	1.2	455
10	Theoretical Study of the Fe(phen)2(NCS)2Spin-Crossover Complex with Reparametrized Density Functionals. Inorganic Chemistry, 2002, 41, 6928-6935.	1.9	411
11	Elucidating reaction mechanisms on quantum computers. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7555-7560.	3.3	401
12	Modern quantum chemistry with [Open]Molcas. Journal of Chemical Physics, 2020, 152, 214117.	1.2	281
13	Exact decoupling of the relativistic Fock operator. Theoretical Chemistry Accounts, 2012, 131, 1.	0.5	238
14	Automated Selection of Active Orbital Spaces. Journal of Chemical Theory and Computation, 2016, 12, 1760-1771.	2.3	237
15	Douglas–Kroll–Hess Theory: a relativistic electrons-only theory for chemistry. Theoretical Chemistry Accounts, 2006, 116, 241-252.	0.5	227
16	Spin in densityâ€ f unctional theory. International Journal of Quantum Chemistry, 2012, 112, 3661-3684.	1.0	185
17	New Benchmark Set of Transition-Metal Coordination Reactions for the Assessment of Density Functionals. Journal of Chemical Theory and Computation, 2014, 10, 3092-3103.	2.3	181
18	Cooperative Lightâ€Activated Iodine and Photoredox Catalysis for the Amination of Câ^'H Bonds. Angewandte Chemie - International Edition, 2017, 56, 8004-8008.	7.2	181

#	Article	IF	CITATIONS
19	The Secret of Dimethyl Sulfoxideâ~'Water Mixtures. A Quantum Chemical Study of 1DMSOâ~'nWater Clusters. Journal of the American Chemical Society, 2002, 124, 6206-6215.	6.6	174
20	Accurate frozen-density embedding potentials as a first step towards a subsystem description of covalent bonds. Journal of Chemical Physics, 2010, 132, 164101.	1.2	172
21	Combined Spectroscopic and Theoretical Evidence for a Persistent End-On Copper Superoxo Complex. Angewandte Chemie - International Edition, 2004, 43, 4360-4363.	7.2	162
22	The Density Matrix Renormalization Group Algorithm in Quantum Chemistry. Zeitschrift Fur Physikalische Chemie, 2010, 224, 583-599.	1.4	162
23	Density matrix renormalization group calculations on relative energies of transition metal complexes and clusters. Journal of Chemical Physics, 2008, 128, 014104.	1.2	158
24	An efficient implementation of two-component relativistic exact-decoupling methods for large molecules. Journal of Chemical Physics, 2013, 138, 184105.	1.2	158
25	Heavy Grignard Reagents: Challenges and Possibilities of Aryl Alkaline Earth Metal Compounds. Chemistry - A European Journal, 2007, 13, 6292-6306.	1.7	157
26	Quantum-information analysis of electronic states of different molecular structures. Physical Review A, 2011, 83, .	1.0	152
27	The density matrix renormalization group in chemistry and molecular physics: Recent developments and new challenges. Journal of Chemical Physics, 2020, 152, 040903.	1.2	152
28	Stable "Inverse―Sandwich Complex with Unprecedented Organocalcium(I): Crystal Structures of [(thf) ₂ Mg(Br)-C ₆ H ₂ -2,4,6-Ph ₃] and [(thf) ₃ Ca{I¼-C ₆ H ₃ -1,3,5-Ph ₃ }Ca(thf) ₃]. Journal of the American Chemical Society, 2009, 131, 2977-2985.	6.6	149
29	Entanglement Measures for Single- and Multireference Correlation Effects. Journal of Physical Chemistry Letters, 2012, 3, 3129-3135.	2.1	143
30	Exploration of Reaction Pathways and Chemical Transformation Networks. Journal of Physical Chemistry A, 2019, 123, 385-399.	1.1	141
31	Localizing normal modes in large molecules. Journal of Chemical Physics, 2009, 130, 084106.	1.2	140
32	Comparison of density functionals for differences between the high- (T2g5) and low- (A1g1) spin states of iron(II) compounds. IV. Results for the ferrous complexes [Fe(L)(â€~NHS4')]. Journal of Chemical Physics, 2005, 122, 234321.	1.2	127
33	An efficient matrix product operator representation of the quantum chemical Hamiltonian. Journal of Chemical Physics, 2015, 143, 244118.	1.2	127
34	Heuristics-Guided Exploration of Reaction Mechanisms. Journal of Chemical Theory and Computation, 2015, 11, 5712-5722.	2.3	127
35	Convergence behavior of the density-matrix renormalization group algorithm for optimized orbital orderings. Journal of Chemical Physics, 2005, 122, 024107.	1.2	121
36	New electron correlation theories for transition metal chemistry. Physical Chemistry Chemical Physics, 2011, 13, 6750.	1.3	120

#	Article	IF	CITATIONS
37	Relativistic Douglas–Kroll–Hess theory. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2012, 2, 139-149.	6.2	120
38	Estimation of the Vibrational Contribution to the Entropy Change Associated with the Low- to High-Spin Transition in Fe(phen)2(NCS)2 Complexes:  Results Obtained by IR and Raman Spectroscopy and DFT Calculations. Journal of Physical Chemistry A, 2002, 106, 12024-12034.	1.1	119
39	Intrinsic Dinitrogen Activation at Bare Metal Atoms. Angewandte Chemie - International Edition, 2006, 45, 6264-6288.	7.2	117
40	First-Principles Investigation of the Schrock Mechanism of Dinitrogen Reduction Employing the Full HIPTN ₃ N Ligand. Inorganic Chemistry, 2008, 47, 3634-3650.	1.9	111
41	A mode-selective quantum chemical method for tracking molecular vibrations applied to functionalized carbon nanotubes. Journal of Chemical Physics, 2003, 118, 1634-1641.	1.2	106
42	Basis Set and Density Functional Dependence of Vibrational Raman Optical Activity Calculations. Journal of Physical Chemistry A, 2005, 109, 7567-7574.	1.1	105
43	The Exploration of Chemical Reaction Networks. Annual Review of Physical Chemistry, 2020, 71, 121-142.	4.8	103
44	Orbital Entanglement in Bond-Formation Processes. Journal of Chemical Theory and Computation, 2013, 9, 2959-2973.	2.3	98
45	Properties of WAu12. Physical Chemistry Chemical Physics, 2004, 6, 11-22.	1.3	97
46	Can DFT Accurately Predict Spin Densities? Analysis of Discrepancies in Iron Nitrosyl Complexes. Journal of Chemical Theory and Computation, 2011, 7, 2740-2752.	2.3	96
47	Quantum computing enhanced computational catalysis. Physical Review Research, 2021, 3, .	1.3	96
48	Theoretical Study of Catalytic Dinitrogen Reduction under Mild Conditions. Inorganic Chemistry, 2005, 44, 9640-9642.	1.9	94
49	New Approaches for ab initio Calculations of Molecules with Strong Electron Correlation. Chimia, 2016, 70, 244.	0.3	94
50	Capture and characterization of a reactive haem–carbenoid complex in an artificial metalloenzyme. Nature Catalysis, 2018, 1, 578-584.	16.1	93
51	Assignment of Vibrational Spectra of 1,10-Phenanthroline by Comparison with Frequencies and Raman Intensities from Density Functional Calculations. Journal of Physical Chemistry A, 2004, 108, 734-742.	1.1	91
52	Calculation of electric-field gradients based on higher-order generalized Douglas–Kroll transformations. Journal of Chemical Physics, 2005, 122, 204107.	1.2	89
53	Local relativistic exact decoupling. Journal of Chemical Physics, 2012, 136, 244108.	1.2	88
54	Multireference Perturbation Theory with Cholesky Decomposition for the Density Matrix Renormalization Group. Journal of Chemical Theory and Computation, 2017, 13, 451-459.	2.3	88

#	Article	IF	CITATIONS
55	The Matter Simulation (R)evolution. ACS Central Science, 2018, 4, 144-152.	5.3	88
56	Comparative analysis of local spin definitions. Journal of Chemical Physics, 2005, 122, 034102.	1.2	87
57	Hydrogenases and oxygen. Chemical Science, 2012, 3, 1739.	3.7	87
58	Context-Driven Exploration of Complex Chemical Reaction Networks. Journal of Chemical Theory and Computation, 2017, 13, 6108-6119.	2.3	87
59	Density matrix renormalization group with efficient dynamical electron correlation through range separation. Journal of Chemical Physics, 2015, 142, 224108.	1.2	86
60	Gas-Phase Câ^'H and Nâ^'H Bond Activation by a High Valent Nitrido-Iron Dication and ã€^NH〉-Transfer to Activated Olefins. Journal of the American Chemical Society, 2008, 130, 4285-4294.	6.6	85
61	Selection of active spaces for multiconfigurational wavefunctions. Journal of Chemical Physics, 2015, 142, 244104.	1.2	84
62	Engineering Molecular Iodine Catalysis for Alkyl–Nitrogen Bond Formation. ACS Catalysis, 2018, 8, 3918-3925.	5.5	83
63	Tetracycline and derivatives—assignment of IR and Raman spectra via DFT calculations. Physical Chemistry Chemical Physics, 2003, 5, 1149-1157.	1.3	82
64	Complete-graph tensor network states: a new fermionic wave function ansatz for molecules. New Journal of Physics, 2010, 12, 103008.	1.2	82
65	Exact decoupling of the Dirac Hamiltonian. III. Molecular properties. Journal of Chemical Physics, 2006, 124, 064102.	1.2	80
66	Accurate <i>ab Initio</i> Spin Densities. Journal of Chemical Theory and Computation, 2012, 8, 1970-1982.	2.3	79
67	Communication: Four-component density matrix renormalization group. Journal of Chemical Physics, 2014, 140, 041101.	1.2	79
68	Binding N2, N2H2, N2H4, and NH3 to Transition-Metal Sulfur Sites: Modeling Potential Intermediates of Biological N2 Fixation. Chemistry - A European Journal, 2004, 10, 819-830.	1.7	78
69	The Delicate Balance of Static and Dynamic Electron Correlation. Journal of Chemical Theory and Computation, 2016, 12, 3764-3773.	2.3	78
70	Decomposition of density matrix renormalization group states into a Slater determinant basis. Journal of Chemical Physics, 2007, 126, 244109.	1.2	77
71	Theoretical Raman Optical Activity Study of the β Domain of Rat Metallothionein. Journal of Physical Chemistry B, 2010, 114, 1057-1063.	1.2	76
72	Nitrous Oxide as a Hydrogen Acceptor for the Dehydrogenative Coupling of Alcohols. Angewandte Chemie - International Edition, 2016, 55, 1854-1858.	7.2	76

#	Article	IF	CITATIONS
73	Stoichiometric Reactions of Enamines Derived from Diphenylprolinol Silyl Ethers with Nitro Olefins and Lessons for the Corresponding Organocatalytic Conversions – a Survey. Helvetica Chimica Acta, 2013, 96, 799-852.	1.0	75
74	Formation of a Nickelâ~'Methyl Species in Methyl-Coenzyme M Reductase, an Enzyme Catalyzing Methane Formation. Journal of the American Chemical Society, 2007, 129, 11028-11029.	6.6	74
75	Spin-adapted matrix product states and operators. Journal of Chemical Physics, 2016, 144, 134101.	1.2	74
76	Analysis of Secondary Structure Effects on the IR and Raman Spectra of Polypeptides in Terms of Localized Vibrations. Journal of Physical Chemistry B, 2009, 113, 6558-6573.	1.2	72
77	Nitrogen Fixation under Mild Ambient Conditions: Part l—The Initial Dissociation/Association Step at Molybdenum Triamidoamine Complexes. Chemistry - A European Journal, 2005, 11, 7448-7460.	1.7	71
78	Chirality-Induced Switch in Hydrogen-Bond Topology: Tetrameric Methyl Lactate Clusters in the Gas Phase. Angewandte Chemie - International Edition, 2006, 45, 3440-3445.	7.2	71
79	Can Raman Optical Activity Separate Axial from Local Chirality? A Theoretical Study of Helical Deca-Alanine. ChemPhysChem, 2006, 7, 2189-2196.	1.0	71
80	Systematic Error Estimation for Chemical Reaction Energies. Journal of Chemical Theory and Computation, 2016, 12, 2762-2773.	2.3	71
81	Relativistic DMRG calculations on the curve crossing of cesium hydride. Journal of Chemical Physics, 2005, 123, 184105.	1.2	69
82	Molecular structure calculations: A unified quantum mechanical description of electrons and nuclei using explicitly correlated Gaussian functions and the global vector representation. Journal of Chemical Physics, 2012, 137, 024104.	1.2	69
83	On the definition of local spin in relativistic and nonrelativistic quantum chemistry. Faraday Discussions, 2007, 135, 97-124.	1.6	68
84	A Nickel Hydride Complex in the Active Site of Methyl-Coenzyme M Reductase: Implications for the Catalytic Cycle. Journal of the American Chemical Society, 2008, 130, 10907-10920.	6.6	68
85	Isoelectronic Arduengo-Type Carbene Analogues with the Group IIIa Elements Boron, Aluminum, Gallium, and Indium. , 1998, 1998, 305-310.		67
86	Understanding the Signatures of Secondary‧tructure Elements in Proteins with Raman Optical Activity Spectroscopy. Chemistry - A European Journal, 2009, 15, 13491-13508.	1.7	67
87	A stable phosphanyl phosphaketene and its reactivity. Dalton Transactions, 2015, 44, 6431-6438.	1.6	67
88	Finding a needle in a haystack: direct determination of vibrational signatures in complex systems. New Journal of Chemistry, 2007, 31, 818.	1.4	66
89	Analysis of electron density distributions from subsystem density functional theory applied to coordination bonds. Chemical Physics Letters, 2008, 461, 353-359.	1.2	66
90	Large-Scale Quantum Dynamics with Matrix Product States. Journal of Chemical Theory and Computation, 2019, 15, 3481-3498.	2.3	66

#	Article	IF	CITATIONS
91	Relativistic Effects on the Topology of the Electron Density. Journal of Chemical Theory and Computation, 2007, 3, 2182-2197.	2.3	65
92	Training Neural Nets To Learn Reactive Potential Energy Surfaces Using Interactive Quantum Chemistry in Virtual Reality. Journal of Physical Chemistry A, 2019, 123, 4486-4499.	1.1	65
93	Trinuclear Copper(II) Complexes Derived from Schiff-Base Ligands Based on a 6-Amino-6-deoxyglucopyranoside:  Structural and Magnetic Characterization. Inorganic Chemistry, 2006, 45, 10066-10076.	1.9	64
94	Analytic high-order Douglas-Kroll-Hess electric field gradients. Journal of Chemical Physics, 2007, 127, 074105.	1.2	64
95	Raman optical activity spectra of chiral transition metal complexes. Chemical Physics, 2008, 346, 212-223.	0.9	64
96	Uncertainty quantification for quantum chemical models of complex reaction networks. Faraday Discussions, 2016, 195, 497-520.	1.6	64
97	Kooperative Lichtâ€aktivierte Iod―und Photoredoxâ€Katalyse zur Aminierung von Câ€Hâ€Bindungen. Angewandte Chemie, 2017, 129, 8117-8121.	1.6	63
98	Automated Identification of Relevant Frontier Orbitals for Chemical Compounds and Processes. Chimia, 2017, 71, 170.	0.3	63
99	Two-Component Relativistic Calculations of Electric-Field Gradients Using Exact Decoupling Methods: Spin–orbit and Picture-Change Effects. Journal of Chemical Theory and Computation, 2012, 8, 4239-4248.	2.3	62
100	Hydrogen Spillover to Nonreducible Supports. Journal of Physical Chemistry C, 2012, 116, 14274-14283.	1.5	62
101	Calculation of Ligand Dissociation Energies in Large Transition-Metal Complexes. Journal of Chemical Theory and Computation, 2018, 14, 2456-2468.	2.3	62
102	Error-Controlled Exploration of Chemical Reaction Networks with Gaussian Processes. Journal of Chemical Theory and Computation, 2018, 14, 5238-5248.	2.3	62
103	Fluorescence kinetics of aqueous solutions of tetracycline and its complexes with Mg2+ and Ca2+This paper is dedicated to Professor Fred Lewis on the event of his 60th birthday Photochemical and Photobiological Sciences, 2003, 2, 1107.	1.6	61
104	Synthesis of Chiral Self-Assembling Rhombs and Their Characterization in Solution, in the Gas Phase, and at the Liquidâ^'Solid Interface. Journal of the American Chemical Society, 2005, 127, 17672-17685.	6.6	61
105	Mössbauer spectroscopy for heavy elements: a relativistic benchmark study of mercury. Theoretical Chemistry Accounts, 2011, 129, 631-650.	0.5	61
106	Quantum Chemical Calculation of Raman Intensities for Large Molecules: The Photoisomerization of [{Feâ€~S4'(PR3)}2(N2H2)] (â€~S4'2â^'= 1,2-bis(2-Mercaptophenylthio)-Ethane(2â^')). Zeitschrift Fur Phys Chemie, 2003, 217, 91-104.	ik ali ische	60
107	Second-Order Self-Consistent-Field Density-Matrix Renormalization Group. Journal of Chemical Theory and Computation, 2017, 13, 2533-2549.	2.3	60
108	<scp>autoCAS</scp> : A Program for Fully Automated Multiconfigurational Calculations. Journal of Computational Chemistry, 2019, 40, 2216-2226.	1.5	60

#	Article	IF	CITATIONS
109	M <scp>O</scp> V <scp>I</scp> P <scp>AC</scp> : Vibrational spectroscopy with a robust metaâ€program for massively parallel standard and inverse calculations. Journal of Computational Chemistry, 2012, 33, 2186-2198.	1.5	59
110	Exact decoupling of the Dirac Hamiltonian. IV. Automated evaluation of molecular properties within the Douglas-Kroll-Hess theory up to arbitrary order. Journal of Chemical Physics, 2006, 124, 064103.	1.2	58
111	Ligands for Dinitrogen Fixation at Schrock-Type Catalysts. Inorganic Chemistry, 2009, 48, 1638-1648.	1.9	58
112	Orbital entanglement and CASSCF analysis of the Ru–NO bond in a Ruthenium nitrosyl complex. Physical Chemistry Chemical Physics, 2015, 17, 14383-14392.	1.3	58
113	Stabilization of diazene in Fe(II)-sulfur model complexes relevant for nitrogenase activity. I. A new approach to the evaluation of intramolecular hydrogen bond energies. Theoretical Chemistry Accounts, 2001, 106, 379-392.	0.5	57
114	The First Photoexcitation Step of Ruthenium-Based Models for Artificial Photosynthesis Highlighted by Resonance Raman Spectroscopy. Journal of Physical Chemistry B, 2007, 111, 6078-6087.	1.2	57
115	The Electronic Structure of the Tris(ethylene) Complexes [M(C ₂ H ₄) ₃] (M=Ni, Pd, and Pt): A Combined Experimental and Theoretical Study. Chemistry - A European Journal, 2007, 13, 10078-10087.	1.7	57
116	Predictors for gases of high electrical strength. IEEE Transactions on Dielectrics and Electrical Insulation, 2013, 20, 856-863.	1.8	57
117	First-Principles Approach to Vibrational Spectroscopy of Biomolecules. , 2006, , 85-132.		56
118	THF Solvates of Extremely Soluble Bis(2,4,6-trimethylphenyl)calcium and Tris(2,6-dimethoxyphenyl)dicalcium Iodide. Angewandte Chemie - International Edition, 2007, 46, 1618-1623.	7.2	56
119	Topological analysis of electron densities from Kohn-Sham and subsystem density functional theory. Journal of Chemical Physics, 2008, 128, 044114.	1.2	56
120	A Theoretical Challenge: Transition-Metal Compounds. Chimia, 2009, 63, 140.	0.3	55
121	Subvalent Organometallic Compounds of the Alkaline Earth Metals in Low Oxidation States. European Journal of Inorganic Chemistry, 2010, 2010, 197-216.	1.0	55
122	Enhancement and de-enhancement effects in vibrational resonance Raman optical activity. Journal of Chemical Physics, 2010, 132, 044113.	1.2	55
123	A Local-Mode Model for Understanding the Dependence of the Extended Amide III Vibrations on Protein Secondary Structure. Journal of Physical Chemistry B, 2010, 114, 10649-10660.	1.2	55
124	Dinuclear Diazene Iron and Ruthenium Complexes as Models for Studying Nitrogenase Activity. Chemistry - A European Journal, 2001, 7, 5195-5202.	1.7	54
125	Spin states in polynuclear clusters: The [Fe2O2] core of the methane monooxygenase active site. Journal of Computational Chemistry, 2006, 27, 1223-1239.	1.5	54
126	A theoretical study of spin states in Ni-S4 complexes and models of the [NiFe] hydrogenase active site. Journal of Biological Inorganic Chemistry, 2004, 9, 873-884.	1.1	52

#	Article	IF	CITATIONS
127	Targeting Intermediates of [FeFe]-Hydrogenase by CO and CN Vibrational Signatures. Inorganic Chemistry, 2011, 50, 3888-3900.	1.9	51
128	From Rare Gas Atoms to Fullerenes: Spherical Aromaticity Studied From the Point of View of Atomic Structure Theory. Chemistry - A European Journal, 2003, 9, 5442-5452.	1.7	50
129	A Stable Sixâ€Coordinate Intermediate in Ammonia–Dinitrogen Exchange at Schrock's Molybdenum Catalyst. Chemistry - A European Journal, 2009, 15, 5073-5082.	1.7	50
130	Theoretical Study of Dioxygen Induced Inhibition of [FeFe]-Hydrogenase. Inorganic Chemistry, 2009, 48, 7127-7140.	1.9	50
131	Hardware efficient quantum algorithms for vibrational structure calculations. Chemical Science, 2020, 11, 6842-6855.	3.7	50
132	Construction of environment states in quantum-chemical density-matrix renormalization group calculations. Journal of Chemical Physics, 2006, 124, 034103.	1.2	49
133	Organofluorosilanes as Model Compounds for ¹⁸ Fâ€Labeled Siliconâ€Based PET Tracers and their Hydrolytic Stability: Experimental Data and Theoretical Calculations (PET=Positron Emission) Tj ETQq1 I	l 0.78 43⁄ 14 rgE	3T4Øverlock
134	On the emergence of molecular structure. Physical Review A, 2011, 83, .	1.0	49
135	Measuring multi-configurational character by orbital entanglement. Molecular Physics, 2017, 115, 2110-2119.	0.8	49
136	A Photochemical Activation Scheme of Inert Dinitrogen by Dinuclear Rull and Fell Complexes. Chemistry - A European Journal, 2004, 10, 4443-4453.	1.7	48
137	Calculated Raman Optical Activity Signatures of Tryptophan Side Chains. ChemPhysChem, 2008, 9, 2177-2180.	1.0	48
138	Inaccessibility of the μ-hydride species in [FeFe] hydrogenases. Chemical Science, 2014, 5, 215-221.	3.7	48
139	Systematic microsolvation approach with a cluster ontinuum scheme and conformational sampling. Journal of Computational Chemistry, 2020, 41, 1144-1155.	1.5	48
140	Calculated Raman Optical Activity Spectra of 1,6-Anhydro-β- <scp>d</scp> -glucopyranose. Journal of Physical Chemistry A, 2009, 113, 8268-8277.	1.1	47
141	Regioselectivity of H Cluster Oxidation. Journal of the American Chemical Society, 2011, 133, 20588-20603.	6.6	47
142	Inverse quantum chemistry: Concepts and strategies for rational compound design. International Journal of Quantum Chemistry, 2014, 114, 823-837.	1.0	47
143	Interactive Chemical Reactivity Exploration. ChemPhysChem, 2014, 15, 3301-3319.	1.0	47
144	Reliable Estimation of Prediction Uncertainty for Physicochemical Property Models. Journal of Chemical Theory and Computation, 2017, 13, 3297-3317.	2.3	47

#	Article	IF	CITATIONS
145	The Douglas–Kroll–Hess electron density at an atomic nucleus. Chemical Physics Letters, 2008, 465, 157-164.	1.2	46
146	Relevance of the Electric-Dipoleâ^'Electric-Quadrupole Contribution to Raman Optical Activity Spectra. Journal of Physical Chemistry B, 2008, 112, 2218-2232.	1.2	46
147	Analysis of the Cartesian Tensor Transfer Method for Calculating Vibrational Spectra of Polypeptides. Journal of Chemical Theory and Computation, 2011, 7, 1867-1881.	2.3	46
148	Construction of CASCI-type wave functions for very large active spaces. Journal of Chemical Physics, 2011, 134, 224101.	1.2	46
149	Unravelling the quantum-entanglement effect of noble gas coordination on the spin ground state of CUO. Physical Chemistry Chemical Physics, 2014, 16, 719-727.	1.3	46
150	Vibrational Density Matrix Renormalization Group. Journal of Chemical Theory and Computation, 2017, 13, 3764-3777.	2.3	46
151	Semiempirical molecular orbital models based on the neglect of diatomic differential overlap approximation. International Journal of Quantum Chemistry, 2018, 118, e25799.	1.0	46
152	Redox Activity of Oxo-Bridged Iridium Dimers in an N,O-Donor Environment: Characterization of Remarkably Stable Ir(IV,V) Complexes. Journal of the American Chemical Society, 2017, 139, 9672-9683.	6.6	45
153	Gaussian Process-Based Refinement of Dispersion Corrections. Journal of Chemical Theory and Computation, 2019, 15, 6046-6060.	2.3	44
154	Correlated ab initio calculations of spectroscopic parameters of SnO within the framework of the higher-order generalized Douglas–Kroll transformation. Journal of Chemical Physics, 2004, 120, 8624-8631.	1.2	43
155	Extracting elements of molecular structure from the all-particle wave function. Journal of Chemical Physics, 2011, 135, 204302.	1.2	43
156	Investigation of the low-spin to high-spin transition in a novel [Fe(pmea)(NCS)2] complex by IR and Raman spectroscopy and DFT calculations. Journal of Raman Spectroscopy, 2006, 37, 108-122.	1.2	42
157	The Shell Structure of Atoms. Journal of Chemical Theory and Computation, 2008, 4, 286-296.	2.3	42
158	Catalytic synthesis of vinylphosphanes via calcium-mediated intermolecular hydrophosphanylation of alkynes and butadiynes. Journal of Organometallic Chemistry, 2011, 696, 216-227.	0.8	42
159	Hydrogen-activation mechanism of [Fe] hydrogenase revealed by multi-scale modeling. Chemical Science, 2014, 5, 4474-4482.	3.7	42
160	A Unifying Structural and Electronic Concept for Hmd and [FeFe] Hydrogenase Active Sites. Inorganic Chemistry, 2010, 49, 5818-5823.	1.9	40
161	Coupled-cluster Raman intensities: Assessment and comparison with multiconfiguration and density functional methods. Journal of Chemical Physics, 2002, 117, 8623-8633.	1.2	39
162	Metal thiolate complexes binding molecular nitrogen under mild conditions: [μ-N2{Ru(PiPr3)(N2Me2S2)}2], the first dinuclear example. Inorganica Chimica Acta, 2003, 348, 194-198.	1.2	39

MARKUS REIHER

#	Article	IF	CITATIONS
163	Convergence characteristics and efficiency of mode-tracking calculations on pre-selected molecular vibrations. Physical Chemistry Chemical Physics, 2004, 6, 4621.	1.3	39
164	Nuclear Quadrupole Moment of ¹¹⁹ Sn. Journal of Physical Chemistry A, 2008, 112, 1666-1672.	1.1	39
165	Intensity tracking for theoretical infrared spectroscopy of large molecules. Journal of Chemical Physics, 2009, 130, 064105.	1.2	39
166	Intensityâ€Carrying Modes in Raman and Raman Optical Activity Spectroscopy. ChemPhysChem, 2009, 10, 2049-2057.	1.0	39
167	Quantum entanglement in carbon–carbon, carbon–phosphorus and silicon–silicon bonds. Physical Chemistry Chemical Physics, 2014, 16, 8872-8880.	1.3	39
168	A Nonorthogonal State-Interaction Approach for Matrix Product State Wave Functions. Journal of Chemical Theory and Computation, 2016, 12, 5881-5894.	2.3	39
169	Studying chemical reactivity in a virtual environment. Faraday Discussions, 2014, 169, 89-118.	1.6	37
170	Spin–Spin interactions in polynuclear transition-metal complexes. Chemical Physics Letters, 2008, 451, 301-308.	1.2	36
171	Selective calculation of high-intensity vibrations in molecular resonance Raman spectra. Journal of Chemical Physics, 2008, 129, 204103.	1.2	36
172	Realâ€ŧime quantum chemistry. International Journal of Quantum Chemistry, 2013, 113, 8-20.	1.0	36
173	Determining Factors for the Accuracy of DMRG in Chemistry. Chimia, 2014, 68, 200.	0.3	36
174	M <scp>olassembler</scp> : Molecular Graph Construction, Modification, and Conformer Generation for Inorganic and Organic Molecules. Journal of Chemical Information and Modeling, 2020, 60, 3884-3900.	2.5	36
175	Self-consistent embedding of density-matrix renormalization group wavefunctions in a density functional environment. Journal of Chemical Physics, 2015, 142, 044111.	1.2	34
176	A Quantum-Chemical Study of Dinitrogen Reduction at Mononuclear Iron–Sulfur Complexes with Hints to the Mechanism of Nitrogenase. Chemistry - A European Journal, 2002, 8, 5332-5339.	1.7	32
177	Importance of backbone angles versus amino acid configurations in peptide vibrational Raman optical activity spectra. Chemical Physics, 2008, 343, 200-209.	0.9	32
178	Haptic quantum chemistry. Journal of Computational Chemistry, 2009, 30, 2010-2020.	1.5	32
179	Error Assessment of Computational Models in Chemistry. Chimia, 2017, 71, 202.	0.3	32
180	The electrostatic potential as a descriptor for the protonation propensity in automated exploration of reaction mechanisms. Faraday Discussions, 2019, 220, 443-463.	1.6	32

#	Article	IF	CITATIONS
181	Mode Tracking of Preselected Vibrations of One-Dimensional Molecular Wires. Journal of Physical Chemistry A, 2004, 108, 2053-2061.	1.1	31
182	Car-Parrinello Molecular Dynamics Study of the Initial Dinitrogen Reduction Step in Sellmann-Type Nitrogenase Model Complexes. Chemistry - A European Journal, 2005, 11, 574-583.	1.7	31
183	Analysis of differences in oxygen sensitivity of Fe–S clusters. Dalton Transactions, 2013, 42, 8729.	1.6	31
184	Steering Orbital Optimization out of Local Minima and Saddle Points Toward Lower Energy. Journal of Chemical Theory and Computation, 2017, 13, 1219-1228.	2.3	31
185	Mechanism Deduction from Noisy Chemical Reaction Networks. Journal of Chemical Theory and Computation, 2019, 15, 357-370.	2.3	31
186	Basis set representation of the electron density at an atomic nucleus. Journal of Chemical Physics, 2010, 133, 144111.	1.2	30
187	Local Spin Analysis and Chemical Bonding. Chemistry - A European Journal, 2013, 19, 15267-15275.	1.7	29
188	Optimization of highly excited matrix product states with an application to vibrational spectroscopy. Journal of Chemical Physics, 2019, 150, 094113.	1.2	29
189	Theoretical Study on the Spin-State Energy Splittings and Local Spin in Cationic [Re]â^'Cnâ^'[Re] Complexes. Inorganic Chemistry, 2005, 44, 6174-6182.	1.9	28
190	Prediction of Raman Optical Activity Spectra of Chiral 3â€Acetylcamphoratoâ€Cobalt Complexes. ChemPhysChem, 2010, 11, 1876-1887.	1.0	27
191	Gradientâ€driven molecule construction: An inverse approach applied to the design of smallâ€molecule fixating catalysts. International Journal of Quantum Chemistry, 2014, 114, 838-850.	1.0	27
192	Autonomous Reaction Network Exploration in Homogeneous and Heterogeneous Catalysis. Topics in Catalysis, 2022, 65, 6-39.	1.3	27
193	Chapter 11 Two-component methods and the generalised Douglas-Kroll transformation. Theoretical and Computational Chemistry, 2002, 11, 622-663.	0.2	26
194	Vibrational center-ligand couplings in transition metal complexes. Journal of Computational Chemistry, 2004, 25, 587-597.	1.5	26
195	On the R-dependence of the spin-orbit coupling constant: Potential energy functions of Xe2+ by high-resolution photoelectron spectroscopy and <i>ab initio</i> quantum chemistry. Journal of Chemical Physics, 2008, 128, 234306.	1.2	26
196	Studies toward the Development of New Silicon-Containing Building Blocks for the Direct 18F-Labeling of Peptides. Journal of Medicinal Chemistry, 2013, 56, 7552-7563.	2.9	26
197	TRANSGRESSING THEORY BOUNDARIES: THE GENERALIZED DOUGLAS–KROLL TRANSFORMATION. Recent Advances in Computational, 2004, , 137-190.	0.8	25
198	Optimized unrestricted Kohn–Sham potentials from <i>ab initio</i> spin densities. Journal of Chemical Physics, 2013, 138, 044111.	1.2	25

MARKUS REIHER

#	Article	IF	CITATIONS
199	Dispersion and Halogen-Bonding Interactions: Binding of the Axial Conformers of Monohalo- and (±)- <i>trans</i> -1,2-Dihalocyclohexanes in Enantiopure Alleno-Acetylenic Cages. Journal of the American Chemical Society, 2017, 139, 12190-12200.	6.6	25
200	Statistical Analysis of Semiclassical Dispersion Corrections. Journal of Chemical Theory and Computation, 2018, 14, 2480-2494.	2.3	25
201	Bonding Properties of Amidinate Complexes of the Group 14 Elements Silicon, Germanium, Tin, and Lead in Their Divalent and Tetravalent Oxidation States. Inorganic Chemistry, 1999, 38, 29-37.	1.9	24
202	Do Divalent [{HC(CR′NR′′)2}E] Compounds Contain E(I) or E(III) (E = B, Al, Ga, In)? On the Corresponde of Formal Oxidation Numbers, Lewis Structures, and Reactivity. European Journal of Inorganic Chemistry, 2002, 2002, 1854-1863.	nce 1.0	24
203	Electromagnetic fields in relativistic one-particle equations. Chemical Physics, 2009, 356, 205-218.	0.9	24
204	Restrained optimization of brokenâ€symmetry determinants. International Journal of Quantum Chemistry, 2009, 109, 2430-2446.	1.0	24
205	Generation of Potential Energy Surfaces in High Dimensions and Their Haptic Exploration. ChemPhysChem, 2011, 12, 3204-3213.	1.0	24
206	Characteristic Raman Optical Activity Signatures of Protein β-Sheets. Journal of Physical Chemistry B, 2013, 117, 11943-11953.	1.2	24
207	Theoretical ⁵⁷ Fe Mössbauer Spectroscopy for Structure Elucidation of [Fe] Hydrogenase Active Site Intermediates. Inorganic Chemistry, 2013, 52, 14205-14215.	1.9	24
208	Kinetic Modeling of Hydrogen Conversion at [Fe] Hydrogenase Active-Site Models. Journal of Physical Chemistry B, 2013, 117, 4806-4817.	1.2	24
209	Polarizable Embedding Density Matrix Renormalization Group. Journal of Chemical Theory and Computation, 2016, 12, 4242-4253.	2.3	24
210	Redoxâ€Active Chiroptical Switching in Mono―and Bisâ€Iron Ethynylcarbo[6]helicenes Studied by Electronic and Vibrational Circular Dichroism and Resonance Raman Optical Activity. Chemistry - A European Journal, 2018, 24, 15067-15079.	1.7	24
211	(N,N) vs. (N,S) chelation of palladium in asymmetric allylic substitution using bis(thiazoline) ligands: A theoretical and experimental study. Journal of Organometallic Chemistry, 2008, 693, 2499-2508.	0.8	23
212	Minimum Energy Paths and Transition States by Curve Optimization. Journal of Chemical Theory and Computation, 2018, 14, 3091-3099.	2.3	23
213	Transcorrelated density matrix renormalization group. Journal of Chemical Physics, 2020, 153, 164115.	1.2	23
214	Regular no-pair Dirac operators: Numerical study of the convergence of high-order Douglas–Kroll–Hess transformations. Physics Letters, Section A: General, Atomic and Solid State Physics, 2007, 360, 603-607.	0.9	22
215	DMRG control using an automated Richardson-type error protocol. Molecular Physics, 2010, 108, 501-512.	0.8	22
216	An enquiry into theoretical bioinorganic chemistry: How heuristic is the character of present-day quantum chemical methods?. Faraday Discussions, 2011, 148, 119-135.	1.6	22

#	Article	IF	CITATIONS
217	Electric-field effects on the [FeFe]-hydrogenase active site. Chemical Communications, 2013, 49, 8099.	2.2	22
218	Activation Barriers of Oxygen Transformation at the Active Site of [FeFe] Hydrogenases. Inorganic Chemistry, 2014, 53, 11890-11902.	1.9	22
219	Molecular Propensity as a Driver for Explorative Reactivity Studies. Journal of Chemical Information and Modeling, 2016, 56, 1470-1478.	2.5	22
220	Generalized Pauli constraints in small atoms. Physical Review A, 2018, 97, .	1.0	22
221	Self-Parametrizing System-Focused Atomistic Models. Journal of Chemical Theory and Computation, 2020, 16, 1646-1665.	2.3	22
222	Experimental Evidence for the Existence of Neutral P6: A New Allotrope of Phosphorus. Angewandte Chemie - International Edition, 1999, 38, 3513-3515.	7.2	21
223	A Wavefunction-Based Criterion for the Detection of Intermolecular Interactions in Molecular Dynamics Simulations. Journal of Physical Chemistry A, 2003, 107, 4141-4146.	1.1	21
224	QM/MM vibrational mode tracking. Journal of Computational Chemistry, 2008, 29, 2460-2470.	1.5	21
225	Analysis of Vibrational Raman Optical Activity Signatures of the (TG)N and (GG)N Conformations of Isotactic Polypropylene Chains in Terms of Localized Modes. Journal of Physical Chemistry A, 2010, 114, 7198-7212.	1.1	21
226	Total Synthesis and Detection of the Bilirubin Oxidation Product (<i>Z</i>)-2-(3-Ethenyl-4-methyl-5-oxo-1,5-dihydro-2 <i>H</i> -pyrrol-2-ylidene)ethanamide (<i>Z</i> -BOX) Tj ETQq	01040 rgB ⁻	[£ verlock 1
227	Real-time feedback from iterative electronic structure calculations. Journal of Computational Chemistry, 2016, 37, 805-812.	1.5	21
228	Prospects of quantum computing for molecular sciences. Materials Theory, 2022, 6, .	2.2	21
229	Binding H2, N2, Hâ^', and BH3 to Transition-Metal Sulfur Sites: Synthesis and Properties of[Ru(L)(PR3)(â€`N2Me2S2')] Complexes (L=η2-H2, Hâ^', BH3; R=Cy,iPr). Chemistry - A European Journal, 200 10, 4214-4224.)41.7	20
230	Facile Synthesis and Theoretical Conformation Analysis of a Triazineâ€Based Doubleâ€Decker Rotor Molecule with Three Anthracene Blades. Chemistry - A European Journal, 2014, 20, 6934-6938.	1.7	20
231	Accelerating Wave Function Convergence in Interactive Quantum Chemical Reactivity Studies. Journal of Chemical Theory and Computation, 2016, 12, 1228-1235.	2.3	20
232	Numerical electronic structure calculations for atoms. II. Generalized variable transformation and relativistic calculations. International Journal of Quantum Chemistry, 2000, 76, 473-499.	1.0	19
233	Direct targeting of adsorbate vibrations with mode-tracking. Surface Science, 2006, 600, 1891-1900.	0.8	19
234	Ïf-Donor and Ï€-Acceptor Stacking Interactions in atrans-2-Linked C60–Cobalt(II) Tetraphenylporphyrin Diad. Angewandte Chemie - International Edition, 2006, 45, 3368-3372.	7.2	19

#	Article	IF	CITATIONS
235	Relativistic effects on the Fukui function. Theoretical Chemistry Accounts, 2010, 127, 195-202.	0.5	19
236	Ion Dynamics in Confined Spaces: Sodium Ion Mobility in Icosahedral Container Molecules. Angewandte Chemie - International Edition, 2010, 49, 7465-7469.	7.2	19
237	Nitrous Oxide as a Hydrogen Acceptor for the Dehydrogenative Coupling of Alcohols. Angewandte Chemie, 2016, 128, 1886-1890.	1.6	19
238	Rigorous Conformational Analysis of Pyrrolidine Enamines with Relevance to Organocatalysis. Helvetica Chimica Acta, 2017, 100, e1700182.	1.0	19
239	A Systems Theory for Chemistry. Foundations of Chemistry, 2003, 5, 23-41.	0.4	18
240	Oxygen Coordination to the Active Site of Hmd in Relation to [FeFe] Hydrogenase. European Journal of Inorganic Chemistry, 2011, 2011, 1163-1171.	1.0	18
241	Elimination of the translational kinetic energy contamination in pre-Born–Oppenheimer calculations. Molecular Physics, 2013, 111, 2086-2092.	0.8	18
242	Comprehensive Analysis of the Neglect of Diatomic Differential Overlap Approximation. Journal of Chemical Theory and Computation, 2018, 14, 5169-5179.	2.3	18
243	Automated Construction of Quantum–Classical Hybrid Models. Journal of Chemical Theory and Computation, 2021, 17, 3797-3813.	2.3	18
244	A comparative study of finite nucleus models for low-lying states of few-electron high-Z atoms. Chemical Physics Letters, 2000, 320, 457-468.	1.2	17
245	Syntheses ofN-(Diphenylphosphanyl)-2-pyridylmethylamine and Its Use as a Ligand in Magnesium and Zinc Complexes. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2007, 633, 893-902.	0.6	17
246	Structure–Property Relationships of Fe ₄ S ₄ Clusters. ChemPlusChem, 2013, 78, 1082-1098.	1.3	17
247	Quantum system partitioning at the single-particle level. Journal of Chemical Physics, 2018, 149, 184104.	1.2	17
248	Approximate Analytical Gradients and Nonadiabatic Couplings for the State-Average Density Matrix Renormalization Group Self-Consistent-Field Method. Journal of Chemical Theory and Computation, 2019, 15, 6724-6737.	2.3	17
249	Self-consistent treatment of the frequency-independent Breit interaction in Dirac-Fock and MCSCF calculations of atomic structures: I. Theoretical considerations. Journal of Physics B: Atomic, Molecular and Optical Physics, 1999, 32, 5489-5505.	0.6	16
250	Intensity Tracking for Vibrational Spectra of Large Molecules. Chimia, 2009, 63, 270-274.	0.3	16
251	How Many Chiral Centers Can Raman Optical Activity Spectroscopy Distinguish in a Molecule?. Journal of Physical Chemistry A, 2012, 116, 5410-5419.	1.1	16
252	Calculated Resonance Vibrational Raman Optical Activity Spectra of Naproxen and Ibuprofen. Journal of Physical Chemistry A, 2016, 120, 9740-9748.	1.1	16

#	Article	IF	CITATIONS
253	Nuclear-electronic all-particle density matrix renormalization group. Journal of Chemical Physics, 2020, 152, 204103.	1.2	16
254	Molecule‧pecific Uncertainty Quantification in Quantum Chemical Studies. Israel Journal of Chemistry, 2022, 62, .	1.0	16
255	The ?Invisible?13C NMR Chemical Shift of the Central Carbon Atom in [(Ph3PAu)6C]2+: A Theoretical Investigation. Chemistry - A European Journal, 2005, 11, 1677-1686.	1.7	15
256	Multiconfigurational Effects in Theoretical Resonance Raman Spectra. ChemPhysChem, 2017, 18, 384-393.	1.0	15
257	QUANTUM CHEMICAL INVESTIGATIONS INTO THE PROBLEM OF BIOLOGICAL NITROGEN FIXATION: SELLMANN-TYPE METAL–SULFUR MODEL COMPLEXES. Advances in Inorganic Chemistry, 2004, , 55-100.	0.4	14
258	Understanding the Template Preorganization Step of an Artificial Arginine Receptor§. Journal of the American Chemical Society, 2005, 127, 8748-8756.	6.6	14
259	Electron Density in Quantum Theory. Structure and Bonding, 2011, , 99-142.	1.0	14
260	Formation of a Ph2PCH(BH3)P(BH3)Ph2 ligand via formal 1,2-borane migration. Chemical Communications, 2013, 49, 1121.	2.2	14
261	Kinetic Consequences of Introducing a Proximal Selenocysteine Ligand into Cytochrome P450cam. Biochemistry, 2015, 54, 6692-6703.	1.2	14
262	Expansive Quantum Mechanical Exploration of Chemical Reaction Paths. Accounts of Chemical Research, 2022, 55, 35-43.	7.6	14
263	Identifying Protein β-Turns with Vibrational Raman Optical Activity. ChemPhysChem, 2011, 12, 1165-1175.	1.0	13
264	Tailored coupled cluster theory in varying correlation regimes. Journal of Chemical Physics, 2020, 153, 244113.	1.2	13
265	Excited-State DMRG Made Simple with FEAST. Journal of Chemical Theory and Computation, 2022, 18, 415-430.	2.3	13
266	A quantum chemical study on the stability of [3n]-allenophanes (n = 2–4). Physical Chemistry Chemical Physics, 2000, 2, 2205-2210.	1.3	12
267	A C2v-Symmetric Barbaralane. Angewandte Chemie - International Edition, 2002, 41, 3429-3433.	7.2	12
268	Synthesis, Structures, and Magnetic Properties of <i>N</i> â€Trialkylsilylâ€8â€amidoquinoline Complexes of Chromium, Manganese, Iron, and Cobalt as well as of Wheelâ€Like Hexanuclear Iron(II) and Manganese(II) Bis(8â€amidoquinoline). European Journal of Inorganic Chemistry, 2010, 2010, 1777-1790.	1.0	12
269	Modeâ€ŧracking based stationaryâ€point optimization. Journal of Computational Chemistry, 2015, 36, 1429-1438.	1.5	12
270	H 3 + as a five-body problem described with explicitly correlated Gaussian basis sets. Journal of Chemical Physics, 2019, 151, 154110.	1.2	12

#	Article	IF	CITATIONS
271	Solvation Free Energies in Subsystem Density Functional Theory. Journal of Chemical Theory and Computation, 2022, 18, 723-740.	2.3	12
272	Coordination and binding geometry of methyl-coenzyme M in the red1m state of methyl-coenzyme M reductase. Journal of Biological Inorganic Chemistry, 2008, 13, 1275-1289.	1.1	11
273	Spin Interactions in Cluster Chemistry. Advances in Inorganic Chemistry, 2010, , 177-230.	0.4	11
274	How Small Amounts of Impurities Are Sufficient to Catalyze the Interconversion of Carbonyl Compounds and Iminium Ions, or Is There a Metathesis through 1,3â€Oxazetidinium Ions? Experiments, Speculations, and Calculations. Helvetica Chimica Acta, 2014, 97, 1177-1203.	1.0	11
275	Relativistic kinetic-balance condition for explicitly correlated basis functions. Journal of Physics B: Atomic, Molecular and Optical Physics, 2015, 48, 245004.	0.6	11
276	Stabilization of activated fragments by shellâ€wise construction of an embedding environment. Journal of Computational Chemistry, 2017, 38, 1023-1038.	1.5	11
277	Self-adaptive tensor network states with multi-site correlators. Journal of Chemical Physics, 2017, 147, 214111.	1.2	11
278	Structure and dynamics of the radical cation of ethane arising from the Jahn–Teller and pseudo-Jahn–Teller effects. Physical Chemistry Chemical Physics, 2018, 20, 1072-1081.	1.3	11
279	Explicitly correlated Gaussian functions with shifted-center and projection techniques in pre-Born–Oppenheimer calculations. Journal of Chemical Physics, 2018, 149, 184105.	1.2	11
280	Generalized elimination of the global translation from explicitly correlated Gaussian functions. Journal of Chemical Physics, 2018, 148, 084112.	1.2	11
281	Complete characterization of the 3p Rydberg complex of a molecular ion: MgAr+. I. Observation of the Mg(3pĨƒ)Ar+ B+ state and determination of its structure and dynamics. Journal of Chemical Physics, 2020, 153, 074310.	1.2	11
282	Self-consistent treatment of the frequency-independent Breit interaction in Dirac-Fock calculations of atomic structures. II. He- and Be-like ions. Journal of Physics B: Atomic, Molecular and Optical Physics, 2001, 34, 3133-3156.	0.6	10
283	Integrated Reaction Path Processing from Sampled Structure Sequences. Journal of Chemical Theory and Computation, 2018, 14, 2052-2062.	2.3	10
284	On the Predictive Power of Chemical Concepts. Chimia, 2021, 75, 311.	0.3	10
285	Quantum Proton Effects from Density Matrix Renormalization Group Calculations. Journal of Chemical Theory and Computation, 2022, 18, 234-250.	2.3	10
286	Analysis of the asymptotic and short-range behavior of quasilocal Hartree-Fock and Dirac-Fock-Coulomb electron-electron interaction potentials. Physical Review A, 2002, 65, .	1.0	9
287	The Gas-Phase Route from Cp*2P6 to Neutral Hexaphosphorus. Chemistry - A European Journal, 2002, 8, 5501-5506.	1.7	9
288	The systems-theoretical view of chemical concepts. Foundations of Chemistry, 2003, 5, 147-163.	0.4	9

#	Article	IF	CITATIONS
289	Comment on "Gradient-based direct normal-mode analysis―[J. Chem. Phys. 122, 184106 (2005)]. Journal of Chemical Physics, 2005, 123, 117101.	1.2	9
290	Syntheses, Crystal Structure and Reactivity of Tin(II) Bis[<i>N</i> â€(diphenylphosphanyl)(2â€pyridylmethyl)amide]. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2009, 635, 462-470.	0.6	9
291	Response to "Comment on â€~Accurate frozen-density embedding potentials as a first step towards a subsystem description of covalent bonds'―[J. Chem. Phys. 135, 027101 (2011)]. Journal of Chemical Physics, 2011, 135, 027102.	1.2	9
292	Quantum Chemical Spin Densities for Radical Cations of Photosynthetic Pigment Models. Photochemistry and Photobiology, 2017, 93, 815-833.	1.3	9
293	Explicitly Correlated Electronic Structure Calculations with Transcorrelated Matrix Product Operators. Journal of Chemical Theory and Computation, 2022, 18, 4203-4217.	2.3	9
294	On the Bonding Properties of Diphosphanylmethanide Complexes with the Group-14 Elements Silicon, Germanium, Tin, and Lead in Their Divalent Oxidation States. European Journal of Inorganic Chemistry, 1999, 1999, 1155-1159.	1.0	8
295	Spin–Orbit Coupling and Potential Energy Functions of Ar ₂ ⁺ and Kr ₂ ⁺ by High-Resolution Photoelectron Spectroscopy and <i>ab Initio</i> Quantum Chemistry. Journal of Chemical Theory and Computation, 2012, 8, 3671-3685.	2.3	8
296	Mechanistic Consequences of Chelate Ligand Stabilization on Nitrogen Fixation by Yandulov–Schrock-Type Complexes. ACS Sustainable Chemistry and Engineering, 2017, 5, 10527-10537.	3.2	8
297	Hydrogenâ€Bonded Networks: Molecular Recognition of Cyclic Alcohols in Enantiopure Allenoâ€Acetylenic Cage Receptors. Angewandte Chemie - International Edition, 2018, 57, 16296-16301.	7.2	8
298	Mechanistic insight into organic and industrial transformations: general discussion. Faraday Discussions, 2019, 220, 282-316.	1.6	8
299	Immersive Interactive Quantum Mechanics for Teaching and Learning Chemistry. Chimia, 2021, 75, 45.	0.3	8
300	The transferability limits of static benchmarks. Physical Chemistry Chemical Physics, 2022, 24, 14692-14698.	1.3	8
301	Analytical local electron-electron interaction model potentials for atoms. Physical Review A, 2002, 66, .	1.0	7
302	Analysis of spin states, spin barriers, and trans-effects involved in the coordination and stabilization of dinitrogen by biomimetic iron complexes. Theoretical Chemistry Accounts, 2005, 114, 76-83.	0.5	7
303	Binding of Reactive Oxygen Species at FeS Cubane Clusters. Chemistry - A European Journal, 2015, 21, 19081-19089.	1.7	7
304	Silyl group migration in a P-silylated phosphonium ylide derived from dppm — A combined experimental and theoretical study. Inorganic Chemistry Communication, 2013, 32, 28-31.	1.8	6
305	Systematic dependence of transitionâ€metal coordination energies on densityâ€functional parametrizations. International Journal of Quantum Chemistry, 2015, 115, 90-98.	1.0	6
306	The apparently unreactive substrate facilitates the electron transfer for dioxygen activation in Rieske dioxygenases. Chemistry - A European Journal, 2022, , .	1.7	6

#	Article	IF	CITATIONS
307	The (not so) simple prediction of enantioselectivity – a pipeline for high-fidelity computations. Chemical Science, 2022, 13, 6858-6864.	3.7	6
308	Toward an Inverse Approach for the Design of Small-Molecule Fixating Catalysts. Materials Research Society Symposia Proceedings, 2013, 1524, 101.	0.1	5
309	Effect of Chelate Ring Size in Iron(II) Isothiocyanato Complexes with Tetradentate Tripyridyl-alkylamine Ligands on Spin Crossover Properties. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2016, 642, 85-94.	0.6	5
310	Semiclassical Dispersion Corrections Efficiently Improve Multiconfigurational Theory with Short-Range Density-Functional Dynamic Correlation. Journal of Physical Chemistry A, 2020, 124, 2834-2841.	1.1	4
311	A C2v-Symmetric Barbaralane. Angewandte Chemie, 2002, 114, 3579-3583.	1.6	3
312	Editorial: Recent Progress in Theoretical and Computational Chemistry. ChemPhysChem, 2011, 12, 3043-3044.	1.0	3
313	Electric transition dipole moment in pre-Born–Oppenheimer molecular structure theory. Journal of Chemical Physics, 2014, 141, 154105.	1.2	3
314	Relativistic Quantum Theory of Many-Electron Systems. Letters in Mathematical Physics, 2014, , 3-29.	0.4	3
315	Tensor network states with three-site correlators. New Journal of Physics, 2016, 18, 113001.	1.2	3
316	Computational and theoretical approaches for mechanistic understanding: general discussion. Faraday Discussions, 2019, 220, 464-488.	1.6	3
317	Important for the Definition of Terminology in Computational Chemistry. Angewandte Chemie - International Edition, 2008, 47, 7171-7171.	7.2	2
318	Special issue on quantum information in chemistry. International Journal of Quantum Chemistry, 2015, 115, 1273-1273.	1.0	2
319	New methods: general discussion. Faraday Discussions, 2016, 195, 521-556.	1.6	2
320	Charge-Transfer-Induced Predissociation in Rydberg States of Molecular Cations: MgAr+. Journal of Physical Chemistry A, 2021, 125, 6681-6696.	1.1	2
321	Exact decoupling of the relativistic Fock operator. , 2012, , 205-224.		2
322	Sequential Decoupling of Negative-Energy States in Douglas–Kroll–Hess Theory. , 2015, , 1-16.		2
323	Ultraâ€fast spectroscopy for <scp>highâ€ŧhroughput</scp> and interactive quantum chemistry. International Journal of Quantum Chemistry, 0, , .	1.0	2
324	Milde Stickstofffixierung:Was sagt die Theorie?. Nachrichten Aus Der Chemie, 2009, 57, 1093-1096.	0.0	1

#	Article	IF	CITATIONS
325	Raman Optical Activity Study of the Signatures Associated to (TG)[sub N] and (GG)[sub N] Conformations of Isotactic Polypropylene Chains using Mode Localization Method. , 2010, , .		1
326	Wasserstoffbrückenâ€Netzwerke: molekulare Erkennung zyklischer Alkohole in enantiomerenreinen allenoâ€acetylenischen Kägrezeptoren. Angewandte Chemie, 2018, 130, 16534-16539.	1.6	1
327	Analytically projected, rotationally symmetric, explicitly correlated Gaussian functions with one-axis-shifted centers. Physical Review A, 2020, 102, .	1.0	1
328	Experimental Evidence for the Existence of Neutral P(6): A New Allotrope of Phosphorus. Angewandte Chemie - International Edition, 1999, 38, 3513-3515.	7.2	1
329	Publisher's Note: Analytical local electron-electron interaction model potentials for atoms [Phys. Rev. A66, 022717 (2002)]. Physical Review A, 2002, 66, .	1.0	0
330	Theoretische Chemie 2002. Nachrichten Aus Der Chemie, 2003, 51, 323-329.	0.0	0
331	From Rare Gas Atoms to Fullerenes: Spherical Aromaticity Studied from the Point of View of Atomic Structure Theory ChemInform, 2004, 35, no.	0.1	0
332	Properties of WAu12 ChemInform, 2004, 35, no.	0.1	0
333	Theoretical Methods for Supramolecular Chemistry. , 0, , 419-471.		0
334	Sequential Decoupling of Negative-Energy States in Douglas–Kroll–Hess Theory. , 2017, , 395-410.		0
335	Understanding unusual element-element bond formation and activation: general discussion. Faraday Discussions, 2019, 220, 376-385.	1.6	Ο
336	Physical methods for mechanistic understanding: general discussion. Faraday Discussions, 2019, 220, 144-178.	1.6	0
337	Structure, Energetics, and Spectroscopy of Models for Enzyme Cofactors. , 2003, , 163-175.		0
338	Quantum chemical methods for the vibrational spectroscopy of large molecules. , 2006, , 1437-1440.		0
339	On the calculation of properties in the Douglas-Kroll-Hess framework. , 2006, , 947-952.		0
340	Editorial. Chimia, 2014, 68, 589.	0.3	0
341	Heuristics and Uncertainty Quantification in Rational and Inverse Compound and Catalyst Design. , 2024, , 485-495.		0