Harald Staiger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6944676/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Â2-Heremans-Schmid Glycoprotein/ Fetuin-A Is Associated With Insulin Resistance and Fat Accumulation in the Liver in Humans. Diabetes Care, 2006, 29, 853-857.	4.3	440
2	Palmitate, but Not Unsaturated Fatty Acids, Induces the Expression of Interleukin-6 in Human Myotubes through Proteasome-dependent Activation of Nuclear Factor-ήB. Journal of Biological Chemistry, 2004, 279, 23942-23952.	1.6	242
3	Pancreatic fat is negatively associated with insulin secretion in individuals with impaired fasting glucose and/or impaired glucose tolerance: a nuclear magnetic resonance study. Diabetes/Metabolism Research and Reviews, 2010, 26, 200-205.	1.7	212
4	Fibroblast Growth Factor 21—Metabolic Role in Mice and Men. Endocrine Reviews, 2017, 38, 468-488.	8.9	192
5	Muscle-Derived Angiopoietin-Like Protein 4 Is Induced by Fatty Acids via Peroxisome Proliferator–Activated Receptor (PPAR)-δ and Is of Metabolic Relevance in Humans. Diabetes, 2009, 58, 579-589.	0.3	166
6	Polymorphisms within Novel Risk Loci for Type 2 Diabetes Determine β-Cell Function. PLoS ONE, 2007, 2, e832.	1.1	147
7	Palmitate-Induced Interleukin-6 Expression in Human Coronary Artery Endothelial Cells. Diabetes, 2004, 53, 3209-3216.	0.3	136
8	Protein Kinase C Â Activation and Translocation to the Nucleus Are Required for Fatty Acid-Induced Apoptosis of Insulin-Secreting Cells. Diabetes, 2003, 52, 991-997.	0.3	134
9	Saturated, but Not Unsaturated, Fatty Acids Induce Apoptosis of Human Coronary Artery Endothelial Cells via Nuclear Factor-ÂB Activation. Diabetes, 2006, 55, 3121-3126.	0.3	130
10	Circulating Palmitoleate Strongly and Independently Predicts Insulin Sensitivity in Humans. Diabetes Care, 2010, 33, 405-407.	4.3	130
11	Insulin Promotes Glycogen Storage and Cell Proliferation in Primary Human Astrocytes. PLoS ONE, 2011, 6, e21594.	1.1	124
12	Different role of saturated and unsaturated fatty acids in β-cell apoptosis. Biochemical and Biophysical Research Communications, 2002, 299, 853-856.	1.0	123
13	Genetic Variations inPPARDandPPARGC1ADetermine Mitochondrial Function and Change in Aerobic Physical Fitness and Insulin Sensitivity during Lifestyle Intervention. Journal of Clinical Endocrinology and Metabolism, 2007, 92, 1827-1833.	1.8	123
14	Pathomechanisms of Type 2 Diabetes Genes. Endocrine Reviews, 2009, 30, 557-585.	8.9	115
15	Expression of Adiponectin Receptor mRNA in Human Skeletal Muscle Cells Is Related to In Vivo Parameters of Glucose and Lipid Metabolism. Diabetes, 2004, 53, 2195-2201.	0.3	108
16	Oxygen consumption in undifferentiated versus differentiated adipogenic mesenchymal precursor cells. Respiratory Physiology and Neurobiology, 2005, 146, 107-116.	0.7	107
17	Polymorphisms within the Novel Type 2 Diabetes Risk Locus MTNR1B Determine Î ² -Cell Function. PLoS ONE, 2008, 3, e3962.	1.1	106
18	Cytokine response of primary human myotubes in an in vitro exercise model. American Journal of Physiology - Cell Physiology, 2013, 305, C877-C886.	2.1	105

#	Article	IF	CITATIONS
19	Common Genetic Variation in the Human FNDC5 Locus, Encoding the Novel Muscle-Derived â€~Browning' Factor Irisin, Determines Insulin Sensitivity. PLoS ONE, 2013, 8, e61903.	1.1	83
20	Gene Variants of <i>TCF7L2</i> Influence Weight Loss and Body Composition During Lifestyle Intervention in a Population at Risk for Type 2 Diabetes. Diabetes, 2010, 59, 747-750.	0.3	69
21	Genome-Wide Association Study of the Modified Stumvoll Insulin Sensitivity Index Identifies <i>BCL2</i> and <i>FAM19A2</i> as Novel Insulin Sensitivity Loci. Diabetes, 2016, 65, 3200-3211.	0.3	67
22	Genome-wide analysis of PDX1 target genes in human pancreatic progenitors. Molecular Metabolism, 2018, 9, 57-68.	3.0	67
23	Effects of resveratrol supplementation on liver fat content in overweight and insulinâ€resistant subjects: A randomized, doubleâ€blind, placeboâ€controlled clinical trial. Diabetes, Obesity and Metabolism, 2018, 20, 1793-1797.	2.2	66
24	Evaluation of Fasting State-/Oral Glucose Tolerance Test-Derived Measures of Insulin Release for the Detection of Genetically Impaired β-Cell Function. PLoS ONE, 2010, 5, e14194.	1.1	65
25	Exercise and diabetes: relevance and causes for response variability. Endocrine, 2016, 51, 390-401.	1.1	65
26	TGF-β Contributes to Impaired Exercise Response by Suppression of Mitochondrial Key Regulators in Skeletal Muscle. Diabetes, 2016, 65, 2849-2861.	0.3	62
27	Fibroblast growth factor 21 is elevated in metabolically unhealthy obesity and affects lipid deposition, adipogenesis, and adipokine secretion of human abdominal subcutaneous adipocytes. Molecular Metabolism, 2015, 4, 519-527.	3.0	60
28	Identification of genetic elements in metabolism by high-throughput mouse phenotyping. Nature Communications, 2018, 9, 288.	5.8	59
29	Point mutations in the PDX1 transactivation domain impair human β-cell development and function. Molecular Metabolism, 2019, 24, 80-97.	3.0	58
30	A Candidate Type 2 Diabetes Polymorphism Near the HHEX Locus Affects Acute Glucose-Stimulated Insulin Release in European Populations: Results from the EUGENE2 study. Diabetes, 2008, 57, 514-517.	0.3	53
31	RARRES2, encoding the novel adipokine chemerin, is a genetic determinant of disproportionate regional body fat distribution: a comparative magnetic resonance imaging study. Metabolism: Clinical and Experimental, 2009, 58, 519-524.	1.5	53
32	Variant near ADAMTS9 Known to Associate with Type 2 Diabetes Is Related to Insulin Resistance in Offspring of Type 2 Diabetes Patients—EUGENE2 Study. PLoS ONE, 2009, 4, e7236.	1.1	53
33	What role do fat cells play in pancreatic tissue?. Molecular Metabolism, 2019, 25, 1-10.	3.0	52
34	A computational biology approach of a genome-wide screen connected miRNAs to obesity and type 2 diabetes. Molecular Metabolism, 2018, 11, 145-159.	3.0	48
35	Metabolic Signatures of Cultured Human Adipocytes from Metabolically Healthy versus Unhealthy Obese Individuals. PLoS ONE, 2014, 9, e93148.	1.1	47
36	Variation in the obesity risk gene FTO determines the postprandial cerebral processing of food stimuli in the prefrontal cortex. Molecular Metabolism, 2014, 3, 109-113.	3.0	44

#	Article	IF	CITATIONS
37	Glycemia Determines the Effect of Type 2 Diabetes Risk Genes on Insulin Secretion. Diabetes, 2010, 59, 3247-3252.	0.3	43
38	Novel Meta-Analysis-Derived Type 2 Diabetes Risk Loci Do Not Determine Prediabetic Phenotypes. PLoS ONE, 2008, 3, e3019.	1.1	39
39	Interaction between the obesity-risk gene FTO and the dopamine D2 receptor gene ANKK1/TaqIA on insulin sensitivity. Diabetologia, 2016, 59, 2622-2631.	2.9	39
40	Influence of common polymorphisms in the SLC5A2 gene on metabolic traits in subjects at increased risk of diabetes and on response to empagliflozin treatment in patients with diabetes. Pharmacogenetics and Genomics, 2017, 27, 135-142.	0.7	39
41	Maternal whole blood cell miRNA-340 is elevated in gestational diabetes and inversely regulated by glucose and insulin. Scientific Reports, 2018, 8, 1366.	1.6	38
42	Glucose-Raising Genetic Variants in MADD and ADCY5 Impair Conversion of Proinsulin to Insulin. PLoS ONE, 2011, 6, e23639.	1.1	38
43	Identification of Four Mouse Diabetes Candidate Genes Altering \hat{l}^2 -Cell Proliferation. PLoS Genetics, 2015, 11, e1005506.	1.5	37
44	Circulating FGF21 Levels in Human Health and Metabolic Disease. Experimental and Clinical Endocrinology and Diabetes, 2020, 128, 752-770.	0.6	37
45	The role of PDGF-dependent suppression of apoptosis in differentiating 3T3-L1 preadipocytes. European Journal of Cell Biology, 1998, 77, 220-227.	1.6	31
46	Elevated circulating follistatin associates with an increased risk of type 2 diabetes. Nature Communications, 2021, 12, 6486.	5.8	31
47	Novel Obesity Risk Loci Do Not Determine Distribution of Body Fat Depots: A Wholeâ€body MRI/MRS study. Obesity, 2010, 18, 1212-1217.	1.5	30
48	Antihyperglycaemic therapies and cancer risk. Diabetes and Vascular Disease Research, 2014, 11, 371-389.	0.9	30
49	Polymorphism rs3123554 in <i>CNR2</i> reveals genderâ€specific effects on body weight and affects loss of body weight and cerebral insulin action. Obesity, 2014, 22, 925-931.	1.5	29
50	BMI-Independent Effects of Gestational Diabetes on Human Placenta. Journal of Clinical Endocrinology and Metabolism, 2018, 103, 3299-3309.	1.8	29
51	Chronic d-serine supplementation impairs insulin secretion. Molecular Metabolism, 2018, 16, 191-202.	3.0	29
52	Common Genetic Variation in the SERPINF1 Locus Determines Overall Adiposity, Obesity-Related Insulin Resistance, and Circulating Leptin Levels. PLoS ONE, 2012, 7, e34035.	1.1	28
53	Untangling the interplay of genetic and metabolic influences on beta-cell function: Examples of potential therapeutic implications involving TCF7L2 and FFAR1. Molecular Metabolism, 2014, 3, 261-267.	3.0	28
54	The D299G/T399I Toll-Like Receptor 4 Variant Associates with Body and Liver Fat: Results from the TULIP and METSIM Studies. PLoS ONE, 2010, 5, e13980.	1.1	27

#	Article	IF	CITATIONS
55	Glucose-Raising Polymorphisms in the Human Clock Gene Cryptochrome 2 (CRY2) Affect Hepatic Lipid Content. PLoS ONE, 2016, 11, e0145563.	1.1	27
56	Activated macrophages control human adipocyte mitochondrial bioenergetics via secreted factors. Molecular Metabolism, 2017, 6, 1226-1239.	3.0	25
57	Common polymorphisms within the NR4A3 locus, encoding the orphan nuclear receptor Nor-1, are associated with enhanced β-cell function in non-diabetic subjects. BMC Medical Genetics, 2009, 10, 77.	2.1	22
58	Variation in the Phosphoinositide 3-Kinase Gamma Gene Affects Plasma HDL-Cholesterol without Modification of Metabolic or Inflammatory Markers. PLoS ONE, 2015, 10, e0144494.	1.1	22
59	Androgen receptor overexpression in prostate cancer in type 2 diabetes. Molecular Metabolism, 2018, 8, 158-166.	3.0	22
60	Interscapular Fat Is Strongly Associated with Insulin Resistance. Journal of Clinical Endocrinology and Metabolism, 2010, 95, 4736-4742.	1.8	21
61	ADAMTS9 Regulates Skeletal Muscle Insulin Sensitivity Through Extracellular Matrix Alterations. Diabetes, 2019, 68, 502-514.	0.3	20
62	Impact of fibroblast growth factor 21 on the secretome of human perivascular preadipocytes and adipocytes: a targeted proteomics approach. Archives of Physiology and Biochemistry, 2016, 122, 281-288.	1.0	19
63	Nor-1, a novel incretin-responsive regulator of insulin genes and insulin secretion. Molecular Metabolism, 2013, 2, 243-255.	3.0	17
64	Granulocyte colony-stimulating factor (G-CSF): A saturated fatty acid-induced myokine with insulin-desensitizing properties in humans. Molecular Metabolism, 2016, 5, 305-316.	3.0	17
65	Elevated Circulating Glutamate Is Associated With Subclinical Atherosclerosis Independently of Established Risk Markers: A Cross-Sectional Study. Journal of Clinical Endocrinology and Metabolism, 2021, 106, e982-e989.	1.8	17
66	Pharmacogenetics of oral antidiabetic therapy. Pharmacogenomics, 2018, 19, 577-587.	0.6	14
67	Preadipocytes of obese humans display gender-specific bioenergetic responses to glucose and insulin. Molecular Metabolism, 2019, 20, 28-37.	3.0	14
68	Generation of a human induced pluripotent stem cell (iPSC) line from a patient carrying a P33T mutation in the PDX1 gene. Stem Cell Research, 2016, 17, 273-276.	0.3	12
69	Generation of a human induced pluripotent stem cell (iPSC) line from a patient with family history of diabetes carrying a C18R mutation in the PDX1 gene. Stem Cell Research, 2016, 17, 292-295.	0.3	12
70	DPP4 gene variation affects GLP-1 secretion, insulin secretion, and glucose tolerance in humans with high body adiposity. PLoS ONE, 2017, 12, e0181880.	1.1	12
71	Glucose tolerance and insulin sensitivity define adipocyte transcriptional programs in human obesity. Molecular Metabolism, 2018, 18, 42-50.	3.0	12
72	Pharmacogenetics: Implications for Modern Type 2 Diabetes Therapy. Review of Diabetic Studies, 2015, 12, 363-376.	0.5	12

#	Article	IF	CITATIONS
73	Peroxisome proliferator-activated receptor gamma (PPARG) modulates free fatty acid receptor 1 (FFAR1) dependent insulin secretion in humans. Molecular Metabolism, 2014, 3, 676-680.	3.0	10
74	Common variation in the sodium/glucose cotransporter 2 gene SLC5A2 does neither affect fasting nor glucose-suppressed plasma glucagon concentrations. PLoS ONE, 2017, 12, e0177148.	1.1	10
75	A Polygenic Risk Score of Lipolysis-Increasing Alleles Determines Visceral Fat Mass and Proinsulin Conversion. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 1090-1098.	1.8	10
76	Integrative network analysis highlights biological processes underlying GLP-1 stimulated insulin secretion: A DIRECT study. PLoS ONE, 2018, 13, e0189886.	1.1	9
77	The Myocyte Expression of Adiponectin Receptors and PPARδIs Highly Coordinated and Reflects Lipid Metabolism of the Human Donors. Experimental Diabetes Research, 2011, 2011, 1-8.	3.8	8
78	The genetic influence on body fat distribution. Drug Discovery Today Disease Mechanisms, 2013, 10, e5-e13.	0.8	8
79	DEUS: an R package for accurate small RNA profiling based on differential expression of unique sequences. Bioinformatics, 2019, 35, 4834-4836.	1.8	8
80	<i>In vitro</i> responsiveness of human muscle cell peroxisome proliferatorâ€activated receptor δ reflects donors' insulin sensitivity <i>in vivo</i> . European Journal of Clinical Investigation, 2011, 41, 1323-1329.	1.7	7
81	AMPK Subunits Harbor Largely Nonoverlapping Genetic Determinants for Body Fat Mass, Glucose Metabolism, and Cholesterol Metabolism. Journal of Clinical Endocrinology and Metabolism, 2020, 105, 14-25.	1.8	7
82	Hypomagnesemia and nephrocalcinosis in a patient with two heterozygous mutations in the CLDN16 gene. Journal of Nephrology, 2007, 20, 107-10.	0.9	7
83	No association between variation in the NR4A1 gene locus and metabolic traits in white subjects at increased risk for type 2 diabetes. BMC Medical Genetics, 2010, 11, 84.	2.1	6
84	Excessive fuel availability amplifies the FTO-mediated obesity risk: results from the TUEF and Whitehall Il studies. Scientific Reports, 2017, 7, 15486.	1.6	5
85	Common Genetic Variation in the Human CTF1 Locus, Encoding Cardiotrophin-1, Determines Insulin Sensitivity. PLoS ONE, 2014, 9, e100391.	1.1	4
86	Serum-free differentiation of 3T3-L1 preadipocytes is characterized by only transient expression of peroxisome proliferator-activated receptor-1 ³ . Biochemical and Biophysical Research Communications, 2002, 296, 125-128.	1.0	3
87	Generation of a human induced pluripotent stem cell line (HMGUi002-A) from a healthy male individual. Stem Cell Research, 2019, 39, 101531.	0.3	1