Eric J Gustafson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6944094/publications.pdf

Version: 2024-02-01

64 papers

4,960 citations

32 h-index 61 g-index

70 all docs

70 docs citations

times ranked

70

4346 citing authors

#	Article	IF	CITATIONS
1	Minireview: Quantifying Landscape Spatial Pattern: What Is the State of the Art?. Ecosystems, 1998, 1, 143-156.	1.6	1,260
2	Relationships between landcover proportion and indices of landscape spatial pattern. Landscape Ecology, 1992, 7, 101-110.	1.9	438
3	Design, development, and application of LANDIS-II, a spatial landscape simulation model with flexible temporal and spatial resolution. Ecological Modelling, 2007, 201, 409-419.	1.2	399
4	The Effect of Landscape Heterogeneity on the Probability of Patch Colonization. Ecology, 1996, 77, 94-107.	1.5	376
5	Spatial simulation of forest succession and timber harvesting using LANDIS. Canadian Journal of Forest Research, 2000, 30, 32-43.	0.8	247
6	When relationships estimated in the past cannot be used to predict the future: using mechanistic models to predict landscape ecological dynamics in a changing world. Landscape Ecology, 2013, 28, 1429-1437.	1.9	119
7	Predicting global change effects on forest biomass and composition in southâ€central Siberia. Ecological Applications, 2010, 20, 700-715.	1.8	110
8	Modeling biological disturbances in LANDIS: a module description and demonstration using spruce budworm. Ecological Modelling, 2004, 180, 153-174.	1.2	105
9	How disturbance, competition, and dispersal interact to prevent tree range boundaries from keeping pace with climate change. Global Change Biology, 2018, 24, e335-e351.	4.2	97
10	The past and future of modeling forest dynamics: from growth and yield curves to forest landscape models. Landscape Ecology, 2017, 32, 1307-1325.	1.9	96
11	Modeling Forest Mortality Caused by Drought Stress: Implications for Climate Change. Ecosystems, 2013, 16, 60-74.	1.6	88
12	Simulating dispersal of reintroduced species within heterogeneous landscapes. Ecological Modelling, 2004, 171, 339-358.	1.2	81
13	Simulating the Effects of Alternative Forest Management Strategies on Landscape Structure. Journal of Environmental Management, 1996, 46, 77-94.	3.8	77
14	Toward more robust projections of forest landscape dynamics under novel environmental conditions: Embedding PnET within LANDIS-II. Ecological Modelling, 2014, 287, 44-57.	1.2	74
15	Study of landscape change under forest harvesting and climate warming-induced fire disturbance. Forest Ecology and Management, 2002, 155, 257-270.	1.4	68
16	Simulating forest fuel and fire risk dynamics across landscapesâ€"LANDIS fuel module design. Ecological Modelling, 2004, 180, 135-151.	1.2	67
17	Modeling the effects of forest harvesting on landscape structure and the spatial distribution of cowbird brood parasitism. Landscape Ecology, 1994, 9, 237-248.	1.9	65
18	How has the state-of-the-art for quantification of landscape pattern advanced in the twenty-first century?. Landscape Ecology, 2019, 34, 2065-2072.	1.9	63

#	Article	IF	Citations
19	A hierarchical fire frequency model to simulate temporal patterns of fire regimes in LANDIS. Ecological Modelling, 2004, 180, 119-133.	1.2	57
20	Influence of forest management alternatives and land type on susceptibility to fire in northern Wisconsin, USA. Landscape Ecology, 2004, 19, 327-341.	1.9	57
21	Studying Fire Mitigation Strategies in Multi-Ownership Landscapes: Balancing the Management of Fire-Dependent Ecosystems and Fire Risk. Ecosystems, 2009, 12, 445-461.	1.6	53
22	Expanding the scale of forest management: allocating timber harvests in time and space. Forest Ecology and Management, 1996, 87, 27-39.	1.4	49
23	The Relationship between Environmental Amenities and Changing Human Settlement Patterns between 1980 and 2000 in the Midwestern USA. Landscape Ecology, 2005, 20, 773-789.	1.9	49
24	Spatial resilience of forested landscapes under climate change and management. Landscape Ecology, 2017, 32, 953-969.	1.9	47
25	More than the sum of its parts: how disturbance interactions shape forest dynamics under climate change. Ecosphere, 2018, 9, e02293.	1.0	46
26	Do rising temperatures always increase forest productivity? Interacting effects of temperature, precipitation, cloudiness and soil texture on tree species growth and competition. Environmental Modelling and Software, 2017, 97, 171-183.	1.9	45
27	Simulating the cumulative effects of multiple forest management strategies on landscape measures of forest sustainability. Landscape Ecology, 2007, 22, 141-156.	1.9	43
28	Integrating ecophysiology and forest landscape models to improve projections of drought effects under climate change. Global Change Biology, 2015, 21, 843-856.	4.2	43
29	Recovery dynamics and climate change effects to future New England forests. Landscape Ecology, 2017, 32, 1385-1397.	1.9	42
30	Modeling forest harvesting effects on landscape pattern in the Northwest Wisconsin Pine Barrens. Forest Ecology and Management, 2006, 236, 113-126.	1.4	36
31	Increasing the reliability of ecological models using modern software engineering techniques. Frontiers in Ecology and the Environment, 2010, 8, 253-260.	1.9	34
32	Using a GIS model to assess terrestrial salamander response to alternative forest management plans. Journal of Environmental Management, 2001, 63, 281-292.	3.8	33
33	EVALUATION OF SPATIAL MODELS TO PREDICT VULNERABILITY OF FOREST BIRDS TO BROOD PARASITISM BY COWBIRDS. , 2002, 12, 412-426.		30
34	Comparing modern and presettlement forest dynamics of a subboreal wilderness: Does spruce budworm enhance fire risk?., 2012, 22, 1278-1296.		30
35	Linking linear programming and spatial simulation models to predict landscape effects of forest management alternatives. Journal of Environmental Management, 2006, 81, 339-350.	3.8	27
36	Effectiveness of forest management strategies to mitigate effects of global change in south-central Siberia. Canadian Journal of Forest Research, 2011, 41, 1405-1421.	0.8	27

#	Article	IF	Citations
37	Simulating ungulate herbivory across forest landscapes: A browsing extension for LANDIS-II. Ecological Modelling, 2017, 350, 11-29.	1.2	26
38	Influence of forest planning alternatives on landscape pattern and ecosystem processes in northern Wisconsin, USA. Forest Ecology and Management, 2008, 254, 429-444.	1.4	25
39	Terrestrial Ecosystems and Their Change. Springer Environmental Science and Engineering, 2013, , 171-249.	0.1	22
40	Implications of mechanistic modeling of drought effects on growth and competition in forest landscape models. Ecosphere, 2016, 7, e01253.	1.0	22
41	Effects of parcelization and land divestiture on forest sustainability in simulated forest landscapes. Forest Ecology and Management, 2006, 236, 305-314.	1.4	21
42	Assessing the spatial implications of interactions among strategic forest management options using a Windows-based harvest simulator. Computers and Electronics in Agriculture, 2002, 33, 179-196.	3.7	20
43	Modeling the Influence of Dynamic Zoning of Forest Harvesting on Ecological Succession in a Northern Hardwoods Landscape. Environmental Management, 2005, 35, 410-425.	1.2	20
44	Comparing effects of fire modeling methods on simulated fire patterns and succession: a case study in the Missouri Ozarks. Canadian Journal of Forest Research, 2008, 38, 1290-1302.	0.8	19
45	The implications of American chestnut reintroduction on landscape dynamics and carbon storage. Ecosphere, 2017, 8, e01773.	1.0	19
46	Climate adaptive silviculture strategies: How do they impact growth, yield, diversity and value in forested landscapes?. Forest Ecology and Management, 2020, 470-471, 118208.	1.4	19
47	SEARCH: Spatially Explicit Animal Response to Composition of Habitat. PLoS ONE, 2013, 8, e64656.	1.1	19
48	Modeling forest landscapes in a changing climate: theory and application. Landscape Ecology, 2017, 32, 1299-1305.	1.9	17
49	Forecasting effects of tree species reintroduction strategies on carbon stocks in a future without historical analog. Global Change Biology, 2018, 24, 5500-5517.	4.2	13
50	Can Future CO2 Concentrations Mitigate the Negative Effects of High Temperature and Longer Droughts on Forest Growth?. Forests, 2018, 9, 664.	0.9	11
51	Beyond blight: Phytophthora root rot under climate change limits populations of reintroduced American chestnut. Ecosphere, 2022, 13, .	1.0	10
52	Scaling Aspen-FACE experimental results to century and landscape scales. Landscape Ecology, 2013, 28, 1785-1800.	1.9	8
53	Decomposition rates of American chestnut (<i>Castanea dentata</i>) wood and implications for coarse woody debris pools. Canadian Journal of Forest Research, 2014, 44, 1575-1585.	0.8	7
54	A Collaborative, Iterative Approach to Transferring Modeling Technology to Land Managers. , 2006, , 43-64.		7

#	Article	IF	CITATIONS
55	Applicability of Predictive Models of Drought-Induced Tree Mortality between the Midwest and Northeast United States. Forest Science, 2014, 60, 327-334.	0.5	6
56	Extrapolating plot-scale CO2 and ozone enrichment experimental results to novel conditions and scales using mechanistic modeling. Ecological Processes, $2018, 7, \ldots$	1.6	6
57	Simulating Growth and Competition on Wet and Waterlogged Soils in a Forest Landscape Model. Frontiers in Ecology and Evolution, 2020, 8, .	1.1	6
58	How do forest landscapes respond to elevated CO ₂ and ozone? Scaling Aspenâ€FACE plotâ€scale experimental results. Ecosphere, 2020, 11, e03162.	1.0	6
59	Publishing landscape ecology research in the 21st century. Landscape Ecology, 2011, 26, 1351-1354.	1.9	5
60	Understanding Landscapes Through Spatial Modeling. World Forests, 2012, , 111-128.	0.1	3
61	Harvest: A Timber Harvest Allocation Model for Simulating Management Alternatives. , 1999, , 109-124.		3
62	Using Landscape Disturbance and Succession Models to Support Forest Management., 2011,, 99-118.		3
63	Linking Temporal-Optimization and Spatial-Simulation Models for Forest Planning. Managing Forest Ecosystems, 2003, , 165-173.	0.4	2
64	Simulating Management Actions and Their Effects on Forest Landscape Pattern. , 2017, , 143-156.		0