Eric J Gustafson

List of Publications by Year in descending order

Source: https:/|exaly.com/author-pdf/6944094/publications.pdf
Version: 2024-02-01

\#	Article	IF	Citations
1	Minireview: Quantifying Landscape Spatial Pattern: What Is the State of the Art?. Ecosystems, 1998, 1, 143-156.	1.6	1,260
2	Relationships between landcover proportion and indices of landscape spatial pattern. Landscape Ecology, 1992, 7, 101-110.	1.9	438
3	Design, development, and application of LANDIS-II, a spatial landscape simulation model with flexible temporal and spatial resolution. Ecological Modelling, 2007, 201, 409-419.	1.2	399
4	The Effect of Landscape Heterogeneity on the Probability of Patch Colonization. Ecology, 1996, 77, 94-107.	1.5	376
5	Spatial simulation of forest succession and timber harvesting using LANDIS. Canadian Journal of Forest Research, 2000, 30, 32-43.	0.8	247
6	When relationships estimated in the past cannot be used to predict the future: using mechanistic models to predict landscape ecological dynamics in a changing world. Landscape Ecology, 2013, 28, 1429-1437.	1.9	119
7	Predicting global change effects on forest biomass and composition in southâ€central Siberia. Ecological Applications, 2010, 20, 700-715.	1.8	110
8	Modeling biological disturbances in LANDIS: a module description and demonstration using spruce budworm. Ecological Modelling, 2004, 180, 153-174.	1.2	105
9	How disturbance, competition, and dispersal interact to prevent tree range boundaries from keeping pace with climate change. Clobal Change Biology, 2018, 24, e335-e351.	4.2	97
10	The past and future of modeling forest dynamics: from growth and yield curves to forest landscape models. Landscape Ecology, 2017, 32, 1307-1325.	1.9	96
11	Modeling Forest Mortality Caused by Drought Stress: Implications for Climate Change. Ecosystems, 2013, 16, 60-74.	1.6	88
12	Simulating dispersal of reintroduced species within heterogeneous landscapes. Ecological Modelling, 2004, 171, 339-358.	1.2	81
13	Simulating the Effects of Alternative Forest Management Strategies on Landscape Structure. Journal of Environmental Management, 1996, 46, 77-94.	3.8	77
14	Toward more robust projections of forest landscape dynamics under novel environmental conditions: Embedding PnET within LANDIS-II. Ecological Modelling, 2014, 287, 44-57.	1.2	74
15	Study of landscape change under forest harvesting and climate warming-induced fire disturbance. Forest Ecology and Management, 2002, 155, 257-270.	1.4	68
16	Simulating forest fuel and fire risk dynamics across landscapesâ€"LANDIS fuel module design. Ecological Modelling, 2004, 180, 135-151.	1.2	67
17	Modeling the effects of forest harvesting on landscape structure and the spatial distribution of cowbird brood parasitism. Landscape Ecology, 1994, 9, 237-248.	1.9	65
18	How has the state-of-the-art for quantification of landscape pattern advanced in the twenty-first century?. Landscape Ecology, 2019, 34, 2065-2072.	1.9	63

Influence of forest management alternatives and land type on susceptibility to fire in northern

Spatial resilience of forested landscapes under climate change and management. Landscape Ecology,29 Recovery dynamics and climate change effects to future New England forests. Landscape Ecology,
2017, 32, 1385-1397.
$1.9 \quad 42$42
Modeling forest harvesting effects on landscape pattern in the Northwest Wisconsin Pine Barrens.
Forest Ecology and Management, 2006, 236, 113-126.1.436Increasing the reliability of ecological models using modern software engineering techniques.1.934Frontiers in Ecology and the Environment, 2010, 8, 253-260.Using a GIS model to assess terrestrial salamander response to alternative forest management plans.

39 | Terrestrial Ecosystems and Their Change. Springer Environmental Science and Engineering, 2013 |
| :--- |
| $171-249$. |

$40 \quad$| Implications of mechanistic modeling of drought effects on growth and competition in forest |
| :--- |
| landscape models. Ecosphere, $2016,7, e 01253$. |

$43 \quad$| Modeling the Influence of Dynamic Zoning of Forest Harvesting on Ecological Succession in a |
| :--- |
| Northern Hardwoods Landscape. Environmental Management, 2005, 35, 410-425. |

$44 \quad$| Comparing effects of fire modeling methods on simulated fire patterns and succession: a case study in |
| :--- |
| the Missouri Ozarks. Canadian Journal of Forest Research, 2008, 38, 1290-1302. |

$45 \quad$| The implications of American chestnut reintroduction on landscape dynamics and carbon storage. |
| :--- |
| Ecosphere, 2017,8, e01773. |

Climate adaptive silviculture strategies: How do they impact growth, yield, diversity and value in
46 forested landscapes?. Forest Ecology and Management, 2020, 470-471, 118208.
$1.4 \quad 19$
47 SEARCH: Spatially Explicit Animal Response to Composition of Habitat. PLoS ONE, 2013, 8, e64656.

1.1

19

48 Modeling forest landscapes in a changing climate: theory and application. Landscape Ecology, 2017, 32,
1299-1305.
1.9

17
Forecasting effects of tree species reintroduction strategies on carbon stocks in a future without

historical analog. Global Change Biology, 2018, 24, 5500-5517.

$$
4.2
$$

$$
13
$$

Can Future CO2 Concentrations Mitigate the Negative Effects of High Temperature and Longer
0.9

11
50 Droughts on Forest Growth?. Forests, 2018, 9, 664.

- 1

51 Beyond blight: Phytophthora root rot under climate change limits populations of reintroduced
1.0

10
American chestnut. Ecosphere, 2022, 13, .

56 Extrapolating plot-scale CO2 and ozone enrichment experimental results to novel conditions and

