
Roberto Cappai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6943893/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Relationships between the Bone Expression of Alzheimer's Disease-Related Genes, Bone Remodelling Genes and Cortical Bone Structure in Neck of Femur Fracture. Calcified Tissue International, 2021, 108, 610-621.	3.1	8
2	Cognitive decline is associated with an accelerated rate of bone loss and increased fracture risk in women: a prospective study from the Canadian Multicentre Osteoporosis Study. Journal of Bone and Mineral Research, 2021, 36, 2106-2115.	2.8	14
3	Sex-dependent effects of amyloid precursor-like protein 2 in the SOD1-G37R transgenic mouse model of MND. Cellular and Molecular Life Sciences, 2021, 78, 6605-6630.	5.4	2
4	The Alzheimer's Disease Amyloid Precursor Protein and its Neuritogenic Actions. Current Alzheimer Research, 2021, 18, 772-786.	1.4	10
5	Evidence for Gender-Specific Bone Loss Mechanisms in Periprosthetic Osteolysis. Journal of Clinical Medicine, 2020, 9, 53.	2.4	5
6	Optimizing red blood cell protein extraction for biomarker quantitation with mass spectrometry. Analytical and Bioanalytical Chemistry, 2020, 412, 1879-1892.	3.7	9
7	Interaction of α-synuclein and Parkin in iron toxicity on SH-SY5Y cells: implications in the pathogenesis of Parkinson's disease. Biochemical Journal, 2020, 477, 1109-1122.	3.7	27
8	Genetic Modulators of Traumatic Brain Injury in Animal Models and the Impact of Sex-Dependent Effects. Journal of Neurotrauma, 2020, 37, 706-723.	3.4	5
9	Characterization of the metal status of natively purified alpha-synuclein from human blood, brain tissue, or recombinant sources using size exclusion ICP-MS reveals no significant binding of Cu, Fe or Zn. Metallomics, 2019, 11, 128-140.	2.4	13
10	Dopamine Cytotoxicity on SH-SY5Y Cells: Involvement of α-Synuclein and Relevance in the Neurodegeneration of Sporadic Parkinson's Disease. Neurotoxicity Research, 2019, 35, 898-907.	2.7	17
11	Elevated Serum 25-Hydroxyvitamin D Levels Are Associated with Improved Bone Formation and Micro-Structural Measures in Elderly Hip Fracture Patients. Journal of Clinical Medicine, 2019, 8, 1988.	2.4	11
12	The crystal structure of amyloid precursorâ€like protein 2 E2 domain completes the amyloid precursor protein family. FASEB Journal, 2019, 33, 5076-5081.	0.5	7
13	Molecular Mechanisms of Neurotoxicity Induced by Polymyxins and Chemoprevention. ACS Chemical Neuroscience, 2019, 10, 120-131.	3.5	45
14	Analysis of Motor Function in Amyloid Precursor-Like Protein 2 Knockout Mice: The Effects of Ageing and Sex. Neurochemical Research, 2019, 44, 1356-1366.	3.3	6
15	Amyloid precursor protein and amyloid precursorâ€like protein 2 have distinct roles in modulating myelination, demyelination, and remyelination of axons. Glia, 2019, 67, 525-538.	4.9	18
16	Amyloid Precursor Protein Dimerisation Reduces Neurite Outgrowth. Molecular Neurobiology, 2019, 56, 13-28.	4.0	8
17	Rapamycin Confers Neuroprotection against Colistin-Induced Oxidative Stress, Mitochondria Dysfunction, and Apoptosis through the Activation of Autophagy and mTOR/Akt/CREB Signaling Pathways. ACS Chemical Neuroscience, 2018, 9, 824-837.	3.5	67
18	Curcumin Attenuates Colistin-Induced Neurotoxicity in N2a Cells via Anti-inflammatory Activity, Suppression of Oxidative Stress, and Apoptosis. Molecular Neurobiology, 2018, 55, 421-434.	4.0	78

#	Article	IF	CITATIONS
19	Polymyxins for CNS infections: Pharmacology and neurotoxicity. , 2018, 181, 85-90.		71
20	Probing Structural Changes during Self-assembly of Surface-Active Hydrophobin Proteins that Form Functional Amyloids in Fungi. Journal of Molecular Biology, 2018, 430, 3784-3801.	4.2	19
21	The Human Amyloid Precursor Protein Binds Copper Ions Dominated by a Picomolar-Affinity Site in the Helix-Rich E2 Domain. Biochemistry, 2018, 57, 4165-4176.	2.5	19
22	The amyloid precursor protein derivative, APP96-110, is efficacious following intravenous administration after traumatic brain injury. PLoS ONE, 2018, 13, e0190449.	2.5	16
23	Minocycline attenuates colistin-induced neurotoxicity via suppression of apoptosis, mitochondrial dysfunction and oxidative stress. Journal of Antimicrobial Chemotherapy, 2017, 72, 1635-1645.	3.0	46
24	Neurotoxicity of Prion Peptides on Cultured Cerebellar Neurons. Methods in Molecular Biology, 2017, 1658, 147-165.	0.9	1
25	The Neuroprotective Properties of the Amyloid Precursor Protein Following Traumatic Brain Injury. , 2016, 7, 163.		84
26	†From past to future' – deciphering the molecular basis of Alzheimer's disease through the pages of the Journal of Neurochemistry. Journal of Neurochemistry, 2016, 139, 215-223.	3.9	4
27	Amyloid Precursor-Like Protein 2 deletion-induced retinal synaptopathy related to congenital stationary night blindness: structural, functional and molecular characteristics. Molecular Brain, 2016, 9, 64.	2.6	9
28	Oligomeric Amyloid-β Toxicity Can Be Inhibited by Blocking Its Cellular Binding in Cortical Neuronal Cultures with Addition of the Triphenylmethane Dye Brilliant Blue G. ACS Chemical Neuroscience, 2016, 7, 1141-1147.	3.5	12
29	Membraneâ€bound tetramer and trimer Aβ oligomeric species correlate with toxicity towards cultured neurons. Journal of Neurochemistry, 2016, 136, 594-608.	3.9	67
30	The N-Terminal Residues 43 to 60 Form the Interface for Dopamine Mediated α-Synuclein Dimerisation. PLoS ONE, 2015, 10, e0116497.	2.5	10
31	Distinct higher-order α-synuclein oligomers induce intracellular aggregation. Biochemical Journal, 2015, 468, 485-493.	3.7	34
32	Small angle X-ray scattering analysis of Cu2+-induced oligomers of the Alzheimer's amyloid β peptide. Metallomics, 2015, 7, 536-543.	2.4	25
33	Alpha-synuclein oligomers and fibrils originate in two distinct conformer pools: a small angle X-ray scattering and ensemble optimisation modelling study. Molecular BioSystems, 2015, 11, 190-196.	2.9	24
34	perspectives on the clean India campaign, the microbiota and ayurveda. Annals of Neurosciences, 2015, 22, 58-60.	1.7	1
35	Making sense of the amyloid precursor protein: its tail tells an interesting tale. Journal of Neurochemistry, 2014, 130, 325-327.	3.9	7
36	Guanidine hydrochloride denaturation of dopamine-induced α-synuclein oligomers: A small-angle X-ray scattering study. Proteins: Structure, Function and Bioinformatics, 2014, 82, 10-21.	2.6	9

#	Article	IF	CITATIONS
37	The neuroprotective activity of the amyloid precursor protein against traumatic brain injury is mediated via the heparin binding site in residues 96â€110. Journal of Neurochemistry, 2014, 128, 196-204.	3.9	46
38	Dopamine-Induced α-Synuclein Oligomers. , 2014, , 291-300.		0
39	Combined deletions of amyloid precursor protein and amyloid precursor-like protein 2 reveal different effects on mouse brain metal homeostasis. Metallomics, 2014, 6, 598.	2.4	21
40	Quantitation and localization of intracellular redox active metals by X-ray fluorescence microscopy in cortical neurons derived from APP and APLP2 knockout tissue. Metallomics, 2014, 6, 1894-1904.	2.4	21
41	αâ€synucleinâ€induced mitochondrial dysfunction in isolated preparation and intact cells: Implications in the pathogenesis of Parkinson's disease. Journal of Neurochemistry, 2014, 131, 868-877.	3.9	45
42	Quantification of copper binding to amyloid precursor protein domain 2 and its Caenorhabditis elegans ortholog. Implications for biological function. Metallomics, 2014, 6, 105-116.	2.4	17
43	Amyloid Precursor Protein (APP)/APP-like Protein 2 (APLP2) Expression Is Required to Initiate Endosome-Nucleus-Autophagosome Trafficking of Glypican-1-derived Heparan Sulfate. Journal of Biological Chemistry, 2014, 289, 20871-20878.	3.4	25
44	Cemented Liner Exchange With Bone Grafting Halts the Progression of Periacetabular Osteolysis. Journal of Arthroplasty, 2014, 29, 822-826.	3.1	7
45	Neuroprotective Copper Bis(thiosemicarbazonato) Complexes Promote Neurite Elongation. PLoS ONE, 2014, 9, e90070.	2.5	39
46	Synthetic dityrosine-linked β-amyloid dimers form stable, soluble, neurotoxic oligomers. Chemical Science, 2013, 4, 4449.	7.4	44
47	Copper modulates the large dense core vesicle secretory pathway in PC12 cells. Metallomics, 2013, 5, 700.	2.4	10
48	Development of a Platinum Complex as an antiâ€Amyloid Agent for the Therapy of Alzheimer's Disease. Angewandte Chemie - International Edition, 2013, 52, 3374-3378.	13.8	56
49	The interplay between lipids and dopamine on α-synuclein oligomerization and membrane binding. Bioscience Reports, 2013, 33, .	2.4	20
50	6-Hydroxydopamine but not 1-methyl-4-phenylpyridinium abolishes α-synuclein anti-apoptotic phenotype by inhibiting its proteasomal degradation and by promoting its aggregation Journal of Biological Chemistry, 2013, 288, 21208.	3.4	0
51	Conformational Behavior and Aggregation of Ataxin-3 in SDS. PLoS ONE, 2013, 8, e69416.	2.5	9
52	The Amyloid Precursor Protein Copper Binding Domain Histidine Residues 149 and 151 Mediate APP Stability and Metabolism. Journal of Biological Chemistry, 2012, 287, 26840-26853.	3.4	25
53	SERF Protein Is a Direct Modifier of Amyloid Fiber Assembly. Cell Reports, 2012, 2, 358-371.	6.4	46
54	sAPPα rescues deficits in amyloid precursor protein knockout mice following focal traumatic brain injury. Journal of Neurochemistry, 2012, 122, 208-220.	3.9	60

#	Article	IF	CITATIONS
55	The hypoxia imaging agent Cull(atsm) is neuroprotective and improves motor and cognitive functions in multiple animal models of Parkinson's disease. Journal of Experimental Medicine, 2012, 209, 837-854.	8.5	151
56	Evaluation of the effects of treatment with sAPPα on functional and histological outcome following controlled cortical impact injury in mice. Neuroscience Letters, 2012, 515, 50-54.	2.1	18
57	Identification of a novel amyloid precursor protein processing pathway that generates secreted Nâ€ŧerminal fragments. FASEB Journal, 2012, 26, 2930-2940.	0.5	23
58	In vitro characterization of [18F]-florbetaben, an AÎ ² imaging radiotracer. Nuclear Medicine and Biology, 2012, 39, 1042-1048.	0.6	54
59	Tau deficiency induces parkinsonism with dementia by impairing APP-mediated iron export. Nature Medicine, 2012, 18, 291-295.	30.7	491
60	Amyloid Precursor Protein Is Required for Normal Function of the Rod and Cone Pathways in the Mouse Retina. PLoS ONE, 2012, 7, e29892.	2.5	33
61	Characterisation of the effect of knockout of the amyloid precursor protein on outcome following mild traumatic brain injury. Brain Research, 2012, 1451, 87-99.	2.2	38
62	Amyloid-β: The seeds of darkness. International Journal of Biochemistry and Cell Biology, 2011, 43, 1247-1251.	2.8	26
63	Suppression of Amyloid β A11 Antibody Immunoreactivity by Vitamin C. Journal of Biological Chemistry, 2011, 286, 27559-27572.	3.4	34
64	Stereospecific interactions are necessary for Alzheimer disease amyloid-β toxicity. Neurobiology of Aging, 2011, 32, 235-248.	3.1	49
65	Metal Ionophore Treatment Restores Dendritic Spine Density and Synaptic Protein Levels in a Mouse Model of Alzheimer's Disease. PLoS ONE, 2011, 6, e17669.	2.5	115
66	Gene Knockout of tau Expression Does Not Contribute to the Pathogenesis of Prion Disease. Journal of Neuropathology and Experimental Neurology, 2011, 70, 1036-1045.	1.7	13
67	The neuroprotective domains of the amyloid precursor protein, in traumatic brain injury, are located in the two growth factor domains. Brain Research, 2011, 1378, 137-143.	2.2	69
68	APP involvement in retinogenesis of mice. Acta Neuropathologica, 2011, 121, 351-363.	7.7	20
69	The neurotransmitter serotonin interrupts α-synuclein amyloid maturation. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2011, 1814, 553-561.	2.3	17
70	18F-THK523: a novel in vivo tau imaging ligand for Alzheimer's disease. Brain, 2011, 134, 1089-1100.	7.6	299
71	Histidine 14 Modulates Membrane Binding and Neurotoxicity of the Alzheimer's Disease Amyloid-β Peptide. Journal of Alzheimer's Disease, 2010, 19, 1387-1400.	2.6	32
72	Bis (thiosemicarbazonato) Cu-64 Complexes for Positron Emission Tomography Imaging of Alzheimer's Disease. Journal of Alzheimer's Disease, 2010, 20, 49-55.	2.6	70

#	Article	IF	CITATIONS
73	The structure of dopamine induced α-synuclein oligomers. European Biophysics Journal, 2010, 39, 1407-1419.	2.2	87
74	A Serial Analysis of Gene Expression Profile of the Alzheimer's Disease Tg2576 Mouse Model. Neurotoxicity Research, 2010, 17, 360-379.	2.7	54
75	αâ€Synuclein induced membrane depolarization and loss of phosphorylation capacity of isolated rat brain mitochondria: Implications in Parkinson's disease. FEBS Letters, 2010, 584, 1571-1576.	2.8	92
76	A domain level interaction network of amyloid precursor protein and Aβ of Alzheimer's disease. Proteomics, 2010, 10, 2377-2395.	2.2	41
77	Conservation of a Glycine-rich Region in the Prion Protein Is Required for Uptake of Prion Infectivity. Journal of Biological Chemistry, 2010, 285, 20213-20223.	3.4	36
78	Alleviating Transcriptional Inhibition of the Norepinephrine <i>Slc6a2</i> Transporter Gene in Depolarized Neurons. Journal of Neuroscience, 2010, 30, 1494-1501.	3.6	26
79	Residues Surrounding the Glycosylphosphatidylinositol Anchor Attachment Site of PrP Modulate Prion Infection: Insight from the Resistance of Rabbits to Prion Disease. Journal of Virology, 2010, 84, 6678-6686.	3.4	24
80	Iron-Export Ferroxidase Activity of β-Amyloid Precursor Protein Is Inhibited by Zinc in Alzheimer's Disease. Cell, 2010, 142, 857-867.	28.9	597
81	A copper radiopharmaceutical for diagnostic imaging of Alzheimer's disease: a bis(thiosemicarbazonato)copper(ii) complex that binds to amyloid-β plaques. Chemical Communications, 2010, 46, 5437.	4.1	60
82	Increasing Cu bioavailability inhibits Aβ oligomers and tau phosphorylation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 381-386.	7.1	259
83	The Molecular Chaperone Hsp90 Modulates Intermediate Steps of Amyloid Assembly of the Parkinson-related Protein α-Synuclein. Journal of Biological Chemistry, 2009, 284, 31190-31199.	3.4	111
84	Characterization of PiB Binding to White Matter in Alzheimer Disease and Other Dementias. Journal of Nuclear Medicine, 2009, 50, 198-204.	5.0	95
85	Stimulus pattern dependence of the Alzheimer's disease amyloid-β 42 peptide's inhibition of long term potentiation in mouse hippocampal slices. Brain Research, 2009, 1269, 176-184.	2.2	34
86	Formation of dopamine-mediated α-synuclein-soluble oligomers requires methionine oxidation. Free Radical Biology and Medicine, 2009, 46, 1328-1337.	2.9	104
87	In vitro characterisation of BF227 binding to α-synuclein/Lewy bodies. European Journal of Pharmacology, 2009, 617, 54-58.	3.5	88
88	PAMAM Dendrimers as Potential Agents against Fibrillation of <i>α</i> ‣ynuclein, a Parkinson's Diseaseâ€Related Protein. Macromolecular Bioscience, 2009, 9, 230-238.	4.1	62
89	Macromol. Biosci. 3/2009. Macromolecular Bioscience, 2009, 9, NA-NA.	4.1	0
90	Copper Coordination by Familial Mutants of Parkinson's Disease-Associated α-Synuclein. Applied Magnetic Resonance, 2009, 36, 223-229.	1.2	10

#	Article	IF	CITATIONS
91	Modulation of α-Synuclein Aggregation by Dopamine: A Review. Neurochemical Research, 2009, 34, 1838-1846.	3.3	101
92	Chronic Exposure to High Levels of Zinc or Copper has Little Effect on Brain Metal Homeostasis or AÎ ² Accumulation in Transgenic APP-C100 Mice. Cellular and Molecular Neurobiology, 2009, 29, 757-767.	3.3	16
93	Amyloid Imaging in Alzheimer's Disease and Other Dementias. Brain Imaging and Behavior, 2009, 3, 246-261.	2.1	32
94	Conformational detection of prion protein with biarsenical labeling and FlAsH fluorescence. Biochemical and Biophysical Research Communications, 2009, 380, 564-568.	2.1	33
95	Dopamine and the Dopamine Oxidation Product 5,6-Dihydroxylindole Promote Distinct On-Pathway and Off-Pathway Aggregation of α-Synuclein in a pH-Dependent Manner. Journal of Molecular Biology, 2009, 387, 771-785.	4.2	86
96	Metallo-complex activation of neuroprotective signalling pathways as a therapeutic treatment for Alzheimer's disease. Molecular BioSystems, 2009, 5, 134-142.	2.9	30
97	Delineating the Mechanism of Alzheimer's Disease Aβ Peptide Neurotoxicity. Neurochemical Research, 2008, 33, 526-532.	3.3	105
98	Copper binding to the Alzheimer's disease amyloid precursor protein. European Biophysics Journal, 2008, 37, 269-279.	2.2	62
99	The role of exosomes in the processing of proteins associated with neurodegenerative diseases. European Biophysics Journal, 2008, 37, 323-332.	2.2	220
100	The ART of Loss: Aβ Imaging in the Evaluation of Alzheimer's Disease and other Dementias. Molecular Neurobiology, 2008, 38, 1-15.	4.0	94
101	Crystallization and preliminary X-ray diffraction analysis of the Fab fragment of WO2, an antibody specific for the Al² peptides associated with Alzheimer's disease. Acta Crystallographica Section F: Structural Biology Communications, 2008, 64, 438-441.	0.7	11
102	Exacerbation of Copper Toxicity in Primary Neuronal Cultures Depleted of Cellular Glutathione. Journal of Neurochemistry, 2008, 72, 2092-2098.	3.9	79
103	Identification of the Alzheimer's disease amyloid precursor protein (APP) and its homologue APLP2 as essential modulators of glucose and insulin homeostasis and growth. Journal of Pathology, 2008, 215, 155-163.	4.5	48
104	ATPâ€binding cassette transporter A7 regulates processing of amyloid precursor protein <i>in vitro</i> . Journal of Neurochemistry, 2008, 106, 793-804.	3.9	124
105	Neurotoxicity from glutathione depletion is mediated by Cu-dependent p53 activation. Free Radical Biology and Medicine, 2008, 44, 44-55.	2.9	21
106	Stabilization of Neurotoxic Soluble β-Sheet-Rich Conformations of the Alzheimer's Disease Amyloid-β Peptide. Biophysical Journal, 2008, 94, 2752-2766.	0.5	87
107	Formation of a High Affinity Lipid-Binding Intermediate during the Early Aggregation Phase of α-Synuclein. Biochemistry, 2008, 47, 1425-1434.	2.5	62
108	Amyloid-β–Anti-Amyloid-β Complex Structure Reveals an Extended Conformation in the Immunodominant B-Cell Epitope. Journal of Molecular Biology, 2008, 377, 181-192.	4.2	49

#	Article	IF	CITATIONS
109	Rapid Restoration of Cognition in Alzheimer's Transgenic Mice with 8-Hydroxy Quinoline Analogs Is Associated with Decreased Interstitial Aβ. Neuron, 2008, 59, 43-55.	8.1	629
110	Enrichment of prion protein in exosomes derived from ovine cerebral spinal fluid. Veterinary Immunology and Immunopathology, 2008, 124, 385-393.	1.2	183
111	Mouse-adapted sporadic human Creutzfeldt–Jakob disease prions propagate in cell culture. International Journal of Biochemistry and Cell Biology, 2008, 40, 2793-2801.	2.8	59
112	Dimeric structures of α-synuclein bind preferentially to lipid membranes. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 1112-1119.	2.6	45
113	Evidence for prion protein expression in enteroglial cells of the myenteric plexus of mouse intestine. Autonomic Neuroscience: Basic and Clinical, 2008, 140, 17-23.	2.8	24
114	Engineered antibody intervention strategies for Alzheimer's disease and related dementias by targeting amyloid and toxic oligomers. Protein Engineering, Design and Selection, 2008, 22, 199-208.	2.1	45
115	Amyloid-β Peptide (Aβ) Neurotoxicity Is Modulated by the Rate of Peptide Aggregation: Aβ Dimers and Trimers Correlate with Neurotoxicity. Journal of Neuroscience, 2008, 28, 11950-11958.	3.6	196
116	Cu ²⁺ Binding Modes of Recombinant α-Synuclein â^' Insights from EPR Spectroscopy. Journal of the American Chemical Society, 2008, 130, 7766-7773.	13.7	100
117	Platinum-based inhibitors of amyloid-β as therapeutic agents for Alzheimer's disease. Proceedings of the United States of America, 2008, 105, 6813-6818.	7.1	182
118	An update on the toxicity of Aβ in Alzheimer's disease. Neuropsychiatric Disease and Treatment, 2008, 4, 1033.	2.2	32
119	Neurotoxicity of Prion Peptides on Cultured Cerebellar Neurons. Methods in Molecular Biology, 2008, 459, 83-96.	0.9	6
120	<i>In Vitro</i> Characterization of Pittsburgh Compound-B Binding to Lewy Bodies. Journal of Neuroscience, 2007, 27, 10365-10371.	3.6	154
121	Molecular determinants of Alzheimer's disease Aβ peptide neurotoxicity. Future Neurology, 2007, 2, 397-409.	0.5	9
122	The redox chemistry of the Alzheimer's disease amyloid βÂpeptide. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 1976-1990.	2.6	533
123	Plasma α-synuclein is decreased in subjects with Parkinson's disease. Experimental Neurology, 2007, 204, 583-588.	4.1	140
124	Structural Studies of the Alzheimer's Amyloid Precursor Protein Copper-binding Domain Reveal How it Binds Copper Ions. Journal of Molecular Biology, 2007, 367, 148-161.	4.2	93
125	Concentration Dependent Cu2+Induced Aggregation and Dityrosine Formation of the Alzheimer's Disease Amyloid-β Peptideâ€. Biochemistry, 2007, 46, 2881-2891.	2.5	179
126	Structure of Alzheimer's disease amyloid precursor protein copper-binding domain at atomic resolution. Acta Crystallographica Section F: Structural Biology Communications, 2007, 63, 819-824.	0.7	28

#	Article	IF	CITATIONS
127	Packaging of prions into exosomes is associated with a novel pathway of PrP processing. Journal of Pathology, 2007, 211, 582-590.	4.5	375
128	Monitoring the prevention of amyloid fibril formation by α rystallin. FEBS Journal, 2007, 274, 6290-6304.	4.7	58
129	The Aβcentric Pathway of Alzheimer's Disease. , 2007, , 5-36.		1
130	The Function of the Amyloid Precursor Protein Family. , 2007, , 37-51.		3
131	Molecular Dissection of the Interaction between Amyloid Precursor Protein and Its Neuronal Trafficking Receptor SorLA/LR11. Biochemistry, 2006, 45, 2618-2628.	2.5	161
132	Correlative studies support lipid peroxidation is linked to PrPres propagation as an early primary pathogenic event in prion disease. Brain Research Bulletin, 2006, 68, 346-354.	3.0	66
133	Amyloid-β Peptide Disruption of Lipid Membranes and the Effect of Metal Ions. Journal of Molecular Biology, 2006, 356, 759-770.	4.2	160
134	Solution Conformation and Heparin-induced Dimerization of the Full-length Extracellular Domain of the Human Amyloid Precursor Protein. Journal of Molecular Biology, 2006, 357, 493-508.	4.2	63
135	Decreased phosphatidylethanolamine binding protein expression correlates with AÎ ² accumulation in the Tg2576 mouse model of Alzheimer's disease. Neurobiology of Aging, 2006, 27, 614-623.	3.1	67
136	Molecular mechanisms for Alzheimer's disease: implications for neuroimaging and therapeutics. Journal of Neurochemistry, 2006, 97, 1700-1725.	3.9	206
137	Alois Alzheimer and Alzheimer's disease: a centennial perspective. Journal of Neurochemistry, 2006, 99, 708-710.	3.9	76
138	Gender and genetic background effects on brain metal levels in APP transgenic and normal mice: Implications for Alzheimer β-amyloid pathology. Journal of Inorganic Biochemistry, 2006, 100, 952-962.	3.5	93
139	Delineating common molecular mechanisms in Alzheimer's and prion diseases. Trends in Biochemical Sciences, 2006, 31, 465-472.	7.5	98
140	Clioquinol Treatment in Familiar Early Onset of Alzheimer's Disease. Pharmacopsychiatry, 2006, 39, 80-80.	3.3	26
141	6-Hydroxydopamine but Not 1-Methyl-4-phenylpyridinium Abolishes α-Synuclein Anti-apoptotic Phenotype by Inhibiting Its Proteasomal Degradation and by Promoting Its Aggregation. Journal of Biological Chemistry, 2006, 281, 9824-9831.	3.4	48
142	Copper-mediated Amyloid-β Toxicity Is Associated with an Intermolecular Histidine Bridge. Journal of Biological Chemistry, 2006, 281, 15145-15154.	3.4	170
143	Detection of prion epitopes on PrP c and PrP sc of transmissible spongiform encephalopathies using specific monoclonal antibodies to PrP. Immunology and Cell Biology, 2005, 83, 632-637.	2.3	18
144	Metals and amyloidâ€Î² in Alzheimer's disease. International Journal of Experimental Pathology, 2005, 86, 147-159.	1.3	303

#	Article	IF	CITATIONS
145	Crystallization and preliminary crystallographic studies of the copper-binding domain of the amyloid precursor protein of Alzheimer's disease. Acta Crystallographica Section F: Structural Biology Communications, 2005, 61, 93-95.	0.7	9
146	Copper-Dependent Inhibition of Human Cytochrome c Oxidase by a Dimeric Conformer of Amyloid-Â1-42. Journal of Neuroscience, 2005, 25, 672-679.	3.6	315
147	Neuronal sorting protein-related receptor sorLA/LR11 regulates processing of the amyloid precursor protein. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 13461-13466.	7.1	582
148	Methylation of the Imidazole Side Chains of the Alzheimer Disease Amyloid-β Peptide Results in Abolition of Superoxide Dismutase-like Structures and Inhibition of Neurotoxicity. Journal of Biological Chemistry, 2005, 280, 13355-13363.	3.4	110
149	Dopamine promotes αâ€synuclein aggregation into SDSâ€resistant soluble oligomers via a distinct folding pathway. FASEB Journal, 2005, 19, 1377-1379.	0.5	239
150	The Amyloid Precursor Protein (APP) of Alzheimer Disease and Its Paralog, APLP2, Modulate the Cu/Zn-Nitric Oxide-catalyzed Degradation of Glypican-1 Heparan Sulfate in Vivo. Journal of Biological Chemistry, 2005, 280, 13913-13920.	3.4	45
151	Mechanisms of Prion Toxicity and Their Relationship to Prion Infectivity. , 2005, , 217-240.		1
152	Metal-Protein Attenuating Compounds (MPACs) for the Treatment of Alzheimers Disease. Drug Design Reviews Online, 2004, 1, 75-82.	0.7	9
153	Structural Biology of Prions. , 2004, 11, 14-32.		7
154	Enhanced Toxicity and Cellular Binding of a Modified Amyloid β Peptide with a Methionine to Valine Substitution. Journal of Biological Chemistry, 2004, 279, 42528-42534.	3.4	99
155	Tyrosine gated electron transfer is key to the toxic mechanism of Alzheimer's disease βâ€∎myloid. FASEB Journal, 2004, 18, 1427-1429.	0.5	251
156	Clioquinol Mediates Copper Uptake and Counteracts Copper Efflux Activities of the Amyloid Precursor Protein of Alzheimer's Disease. Journal of Biological Chemistry, 2004, 279, 51958-51964.	3.4	138
157	Gene knockout of amyloid precursor protein and amyloid precursorâ€ŀike proteinâ€2 increases cellular copper levels in primary mouse cortical neurons and embryonic fibroblasts. Journal of Neurochemistry, 2004, 91, 423-428.	3.9	100
158	Iron inhibits neurotoxicity induced by trace copper and biological reductants. Journal of Biological Inorganic Chemistry, 2004, 9, 269-280.	2.6	42
159	P3-187 Mutagenesis-toxicity studies of the amyloid beta peptide of Alzheimer's disease. Neurobiology of Aging, 2004, 25, S409.	3.1	Ο
160	P4-241 The mechanism by which Aβ produces hydrogen peroxide and its role in neurotoxicity. Neurobiology of Aging, 2004, 25, S544.	3.1	1
161	Expression of truncated presenilin 2 splice variant in Alzheimer's disease, bipolar disorder, and schizophrenia brain cortex. Molecular Brain Research, 2004, 127, 128-135.	2.3	30
162	Interaction of the Molecular Chaperone αB-Crystallin with α-Synuclein: Effects on Amyloid Fibril Formation and Chaperone Activity. Journal of Molecular Biology, 2004, 340, 1167-1183.	4.2	198

#	Article	IF	CITATIONS
163	Strategies for Crystallizing the N-Terminal Growth Factor Domain of Amyloid Precursor Protein. , 2004, , .		0
164	Methionine oxidation: Implications for the mechanism of toxicity of the β-amyloid peptide from Alzheimer's disease. International Journal of Peptide Research and Therapeutics, 2003, 10, 413-417.	0.1	13
165	Diverse fibrillar peptides directly bind the Alzheimer's amyloid precursor protein and amyloid precursor-like protein 2 resulting in cellular accumulation. Brain Research, 2003, 966, 231-244.	2.2	30
166	Neurotoxicity from glutathione depletion is dependent on extracellular trace copper. Journal of Neuroscience Research, 2003, 71, 889-897.	2.9	63
167	Selecting cells with different Alzheimer's disease gamma-secretase activity using FACS. Differential effect of presenilin exon 9 deletion on gamma- and epsilon-cleavage. FEBS Journal, 2003, 270, 495-506.	0.2	6
168	Structure of the Alzheimer's Disease Amyloid Precursor Protein Copper Binding Domain. Journal of Biological Chemistry, 2003, 278, 17401-17407.	3.4	248
169	Methionine oxidation: Implications for the mechanism of toxicity of the β-amyloid peptide from Alzheimer's disease. International Journal of Peptide Research and Therapeutics, 2003, 10, 413-417.	1.9	6
170	Neurotoxic, Redox-competent Alzheimer's β-Amyloid Is Released from Lipid Membrane by Methionine Oxidation. Journal of Biological Chemistry, 2003, 278, 42959-42965.	3.4	176
171	Cu ²⁺ -induced modification of the kinetics of Aβ(1-42) channels. American Journal of Physiology - Cell Physiology, 2003, 285, C873-C880.	4.6	20
172	Overexpression of Alzheimer's Disease Amyloid-β Opposes the Age-dependent Elevations of Brain Copper and Iron. Journal of Biological Chemistry, 2002, 277, 44670-44676.	3.4	324
173	Metalloenzyme-like Activity of Alzheimer's Disease β-Amyloid. Journal of Biological Chemistry, 2002, 277, 40302-40308.	3.4	536
174	Evidence for a Copper-Binding Superfamily of the Amyloid Precursor Proteinâ€. Biochemistry, 2002, 41, 9310-9320.	2.5	50
175	Contrasting, Species-Dependent Modulation of Copper-Mediated Neurotoxicity by the Alzheimer's Disease Amyloid Precursor Protein. Journal of Neuroscience, 2002, 22, 365-376.	3.6	83
176	Alzheimer's disease amyloid beta and prion protein amyloidogenic peptides promote macrophage survival, DNA synthesis and enhanced proliferative response to CSF-1 (M-CSF). Brain Research, 2002, 940, 49-54.	2.2	17
177	Possible mechanisms of APP-mediated oxidative stress in Alzheimer's disease1,2 1Guest Editors: Mark A. Smith and George Perry 2This article is part of a series of reviews on "Causes and Consequences of Oxidative Stress in Alzheimer's Disease.―The full list of papers may be found on the homepage of the iournal Free Radical Biology and Medicine. 2002. 33. 45-51.	2.9	28
178	Intracellular Accumulation of Detergent-Soluble Amyloidogenic AÎ ² Fragment of Alzheimer's Disease Precursor Protein in the Hippocampus of Aged Transgenic Mice. Journal of Neurochemistry, 2002, 72, 2479-2487.	3.9	74
179	The Hydrophobic Core Sequence Modulates the Neurotoxic and Secondary Structure Properties of the Prion Peptide 106-126. Journal of Neurochemistry, 2002, 73, 1557-1565.	3.9	152
180	Copper and Zinc Binding Modulates the Aggregation and Neurotoxic Properties of the Prion Peptide PrP106â^'126. Biochemistry, 2001, 40, 8073-8084.	2.5	264

#	Article	IF	CITATIONS
181	Sublethal Concentrations of Prion Peptide PrP106–126 or the Amyloid Beta Peptide of Alzheimer's Disease Activates Expression of Proapoptotic Markers in Primary Cortical Neurons. Neurobiology of Disease, 2001, 8, 299-316.	4.4	66
182	Homocysteine potentiates copper―and amyloid beta peptideâ€mediated toxicity in primary neuronal cultures: possible risk factors in the Alzheimer'sâ€type neurodegenerative pathways. Journal of Neurochemistry, 2001, 76, 1509-1520.	3.9	228
183	Interaction of linear homologous DNA duplexes via Holliday junction formation. FEBS Journal, 2001, 268, 7-14.	0.2	18
184	The C-terminal fragment of the Alzheimer's disease amyloid protein precursor is degraded by a proteasome-dependent mechanism distinct from Î ³ -secretase. FEBS Journal, 2001, 268, 5329-5336.	0.2	116
185	Involvement of the 5-lipoxygenase pathway in the neurotoxicity of the prion peptide PrP106-126. Journal of Neuroscience Research, 2001, 65, 565-572.	2.9	47
186	Variable phenotype of Alzheimer's disease with spastic paraparesis. Annals of Neurology, 2001, 49, 125-129.	5.3	90
187	Crystal Structure of the N-terminal Heparin-Binding Domain of Alzheimer's Amyloid Precursor Protein. Biochemical Society Transactions, 2000, 28, A447-A447.	3.4	Ο
188	Amyloidogenicity and neurotoxicity of peptides corresponding to the helical regions of PrPC. Journal of Neuroscience Research, 2000, 62, 293-301.	2.9	53
189	Accumulation of Insoluble α-Synuclein in Dementia with Lewy Bodies. Neurobiology of Disease, 2000, 7, 192-200.	4.4	75
190	The Alzheimer's Disease Amyloid Precursor Protein Modulates Copper-Induced Toxicity and Oxidative Stress in Primary Neuronal Cultures. Journal of Neuroscience, 1999, 19, 9170-9179.	3.6	213
191	The amyloid βâ€protein precursor of Alzheimer's disease is degraded extracellularly by a Kunitz protease inhibitor domainâ€sensitive trypsinâ€like serine protease in cultures of chick sympathetic neurons. FEBS Journal, 1999, 266, 509-516.	0.2	15
192	Crystal structure of the N-terminal, growth factor-like domain of Alzheimer amyloid precursor protein. Nature Structural Biology, 1999, 6, 327-331.	9.7	229
193	Title is missing!. International Journal of Peptide Research and Therapeutics, 1999, 6, 129-134.	0.1	0
194	The synthesis and spectroscopic analysis of the neurotoxic prion peptide 106–126: Comparative use of manual Boc and Fmoc chemistry. International Journal of Peptide Research and Therapeutics, 1999, 6, 129-134.	0.1	10
195	Copper levels are increased in the cerebral cortex and liver of APP and APLP2 knockout mice. Brain Research, 1999, 842, 439-444.	2.2	279
196	Amyloid β. International Journal of Biochemistry and Cell Biology, 1999, 31, 885-889.	2.8	34
197	Recombinant human amyloid precursor-like protein 2 (APLP2) expressed in the yeastPichia pastoriscan stimulate neurite outgrowth. FEBS Letters, 1999, 442, 95-98.	2.8	57
198	Familial Prion Disease Mutation Alters the Secondary Structure of Recombinant Mouse Prion Protein:Â Implications for the Mechanism of Prion Formationâ€. Biochemistry, 1999, 38, 3280-3284.	2.5	35

#	Article	IF	CITATIONS
199	Prion Protein-Deficient Neurons Reveal Lower Glutathione Reductase Activity and Increased Susceptibility to Hydrogen Peroxide Toxicity. American Journal of Pathology, 1999, 155, 1723-1730.	3.8	182
200	Copper inhibits $\langle i \rangle \hat{l}^2 \langle i \rangle$ -amyloid production and stimulates the non-amyloidogenic pathway of amyloid-precursor-protein secretion. Biochemical Journal, 1999, 344, 461-467.	3.7	158
201	Copper inhibits β-amyloid production and stimulates the non-amyloidogenic pathway of amyloid-precursor-protein secretion. Biochemical Journal, 1999, 344, 461.	3.7	74
202	Inhibition of platelet activation by the Alzheimer's disease amyloid precursor protein. British Journal of Haematology, 1998, 103, 402-415.	2.5	31
203	Effects of the amyloid protein precursor of Alzheimer's disease and other ligands of the LDL receptor-related protein on neurite outgrowth from sympathetic neurons in culture. FEBS Letters, 1998, 428, 13-16.	2.8	28
204	Subcellular localization of the Alzheimer's disease amyloid precursor protein and derived polypeptides expressed in a recombinant yeast system. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 1998, 5, 79-89.	3.0	13
205	Processing of the Alzheimer's Disease Amyloid Precursor Protein inPichia pastoris: Immunodetection of α-, β-, and γ-Secretase Productsâ€. Biochemistry, 1998, 37, 14958-14965.	2.5	28
206	Products of the Alzheimer's disease amyloid precursor protein generated by,β-secretase are present in human platelets, and secreted upon degranulation. , 1998, 13, 236-244.		12
207	Survival of Cultured Neurons from Amyloid Precursor Protein Knock-Out Mice against Alzheimer's Amyloid-β Toxicity and Oxidative Stress. Journal of Neuroscience, 1998, 18, 6207-6217.	3.6	90
208	Expression of Human Amyloid Precursor Protein Ectodomains inPichia pastoris:Analysis of Culture Conditions, Purification, and Characterization. Protein Expression and Purification, 1997, 10, 283-291.	1.3	55
209	Expression and analysis of heparin-binding regions of the amyloid precursor protein of Alzheimer's disease. FEBS Letters, 1997, 415, 303-307.	2.8	48
210	Alzheimer's disease-associated presenilin 1 in neuronal cells: Evidence for localization to the endoplasmic reticulum-Golgi intermediate compartment. , 1997, 49, 719-731.		68
211	Identification of Heparinâ€Binding Domains in the Amyloid Precursor Protein of Alzheimer's Disease by Deletion Mutagenesis and Peptide Mapping. Journal of Neurochemistry, 1997, 68, 1164-1172.	3.9	66
212	Alzheimer's diseaseâ€associated presenilin 1 in neuronal cells: Evidence for localization to the endoplasmic reticulumâ€Golgi intermediate compartment. Journal of Neuroscience Research, 1997, 49, 719-731.	2.9	5
213	Recent developments in the transmissible spongiform encephalopathies: Implications for clinical practice. Journal of Clinical Neuroscience, 1996, 3, 97-101.	1.5	1
214	Secreted Glypican Binds to the Amyloid Precursor Protein of Alzheimer's Disease (APP) and Inhibits APP-induced Neurite Outgrowth. Journal of Biological Chemistry, 1996, 271, 31215-31221.	3.4	86
215	The Leishmania promastigote surface antigen 2 complex is differentially expressed during the parasite life cycle. Molecular and Biochemical Parasitology, 1995, 74, 189-200.	1.1	49
216	Candidate .gammaSecretases in the Generation of the Carboxyl Terminus of the Alzheimer's Disease .beta.A4 Amyloid: Possible Involvement of Cathepsin D. Biochemistry, 1995, 34, 14185-14192.	2.5	100

#	Article	IF	CITATIONS
217	Cloning and sequence of a Leishmania major homologue to the fibrillarin gene. Molecular and Biochemical Parasitology, 1994, 64, 353-355.	1.1	10
218	Characterization of a polymorphic family of integral membrane proteins in promastigotes of different Leishmania species. Molecular and Biochemical Parasitology, 1994, 67, 103-113.	1.1	34
219	Cloning and characterization of a Golgi-associated GTP-binding protein homologue from Leishmania major. Molecular and Biochemical Parasitology, 1993, 62, 73-82.	1.1	29
220	The Plasmodium falciparum hypoxanthine-guanine phosphoribosyl transferase gene has a 5′ upstream intron. Molecular and Biochemical Parasitology, 1992, 54, 117-120.	1.1	5
221	Cloning and analysis of the RESA-2 gene: a DNA homologue of the ring-infected erythrocyte surface antigen gene of Plasmodium falciparum. Molecular and Biochemical Parasitology, 1992, 54, 213-221.	1.1	25