Peter Rotwein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6943568/publications.pdf

Version: 2024-02-01

81 4,837 34 papers citations h-index

82 82 82 4024 all docs docs citations times ranked citing authors

69

g-index

#	Article	IF	CITATIONS
1	ZMAT2 in Humans and Other Primates: A Highly Conserved and Understudied Gene. Evolutionary Bioinformatics, 2020, 16, 117693432094150.	1.2	3
2	Structure and expression of the long noncoding RNA gene MIR503 in humans and non-human primates. Molecular and Cellular Endocrinology, 2020, 510, 110819.	3.2	6
3	The Zmat2 gene in non-mammalian vertebrates: Organizational simplicity within a divergent locus in fish. PLoS ONE, 2020, 15, e0233081.	2.5	O
4	Regulation of gene expression by growth hormone. Molecular and Cellular Endocrinology, 2020, 507, 110788.	3.2	21
5	Revisiting the Population Genetics of Human Height. Journal of the Endocrine Society, 2020, 4, bvaa025.	0.2	4
6	Zmat2 in mammals: conservation and diversification among genes and Pseudogenes. BMC Genomics, 2020, 21, 113.	2.8	2
7	Title is missing!. , 2020, 15, e0233081.		O
8	Title is missing!. , 2020, 15, e0233081.		0
9	The insulin-like growth factor 2 gene in mammals: Organizational complexity within a conserved locus. PLoS ONE, 2019, 14, e0219155.	2.5	16
10	Variation in the repulsive guidance molecule family in human populations. Physiological Reports, 2019, 7, e13959.	1.7	3
11	Characterizing the complexity of Australian marsupial insulin-like growth factor $1\mathrm{genes}$. Molecular and Cellular Endocrinology, 2019, 488, 52-69.	3.2	2
12	Quantifying promoter-specific Insulin-like Growth Factor 1 gene expression by interrogating public databases. Physiological Reports, 2019, 7, e13970.	1.7	7
13	Gene mapping by RNA-sequencing: a direct way to characterize genes and gene expression through targeted queries of large public databases. Bio-protocol, 2019, 9, .	0.4	0
14	The complex genetics of human insulin-like growth factor 2 are not reflected in public databases. Journal of Biological Chemistry, 2018, 293, 4324-4333.	3.4	21
15	The insulin-like growth factor 2 gene and locus in nonmammalian vertebrates: Organizational simplicity with duplication but limited divergence in fish. Journal of Biological Chemistry, 2018, 293, 15912-15932.	3.4	19
16	Insulinlike Growth Factor 1 Gene Variation in Vertebrates. Endocrinology, 2018, 159, 2288-2305.	2.8	18
17	Similarity and variation in the insulin-like growth factor 2 - H19 locus in primates. Physiological Genomics, 2018, 50, 425-439.	2.3	7
18	Quantification of growth factor signaling and pathway cross talk by live-cell imaging. American Journal of Physiology - Cell Physiology, 2017, 312, C328-C340.	4.6	17

#	Article	IF	Citations
19	The New Genomics: What Molecular Databases Can Tell Us About Human Population Variation and Endocrine Disease. Endocrinology, 2017, 158, 2035-2042.	2.8	2
20	Large-scale analysis of variation in the insulin-like growth factor family in humans reveals rare disease links and common polymorphisms. Journal of Biological Chemistry, 2017, 292, 9252-9261.	3.4	22
21	Variation in Akt protein kinases in human populations. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2017, 313, R687-R692.	1.8	4
22	Variation in the Insulin-Like Growth Factor 1 Gene in Primates. Endocrinology, 2017, 158, 804-814.	2.8	11
23	Diversification of the insulin-like growth factor 1 gene in mammals. PLoS ONE, 2017, 12, e0189642.	2.5	36
24	Unraveling Growth Factor Signaling and Cell Cycle Progression in Individual Fibroblasts. Journal of Biological Chemistry, 2016, 291, 14628-14638.	3.4	25
25	Mapping growth factor encoded akt signaling dynamics. Journal of Cell Science, 2016, 129, 2052-63.	2.0	34
26	Defining human insulin-like growth factor I gene regulation. American Journal of Physiology - Endocrinology and Metabolism, 2016, 311, E519-E529.	3.5	18
27	Characterizing a distal muscle enhancer in the mouse <i>Igf2</i> locus. Physiological Genomics, 2016, 48, 167-172.	2.3	7
28	Mapping growth-factor-modulated Akt signaling dynamics. Development (Cambridge), 2016, 143, e1.2-e1.2.	2.5	3
29	Identifying growth hormone-regulated enhancers in the <i>Igf1</i> locus. Physiological Genomics, 2015, 47, 559-568.	2.3	17
30	Separating myoblast differentiation from muscle cell fusion using IGF-I and the p38 MAP kinase inhibitor SB202190. American Journal of Physiology - Cell Physiology, 2015, 309, C491-C500.	4.6	16
31	Akt signaling dynamics in individual cells. Journal of Cell Science, 2015, 128, 2509-19.	2.0	37
32	Distinct Actions of Akt1 on Skeletal Architecture and Function. PLoS ONE, 2014, 9, e93040.	2.5	9
33	Differential effects of STAT proteins on growth hormone-mediated IGF-I gene expression. American Journal of Physiology - Endocrinology and Metabolism, 2014, 307, E847-E855.	3.5	14
34	Editorial: The Fall of Mechanogrowth Factor?. Molecular Endocrinology, 2014, 28, 155-156.	3.7	10
35	Live cell imaging reveals marked variability in myoblast proliferation and fate. Skeletal Muscle, 2013, 3, 10.	4.2	7
36	Severe Growth Deficiency is Associated with STAT5b Mutations that Disrupt Protein Folding and Activity. Molecular Endocrinology, 2013, 27, 150-161.	3.7	15

#	Article	IF	Citations
37	William H. Daughaday and the foundations of modern research into growth hormone and the insulin-like growth factors. Pediatric Endocrinology Reviews, 2013, 10, 280-3.	1.2	О
38	Defining Akt actions in muscle differentiation. American Journal of Physiology - Cell Physiology, 2012, 303, C1292-C1300.	4.6	45
39	Mapping the growth hormone–Stat5b–IGF-I transcriptional circuit. Trends in Endocrinology and Metabolism, 2012, 23, 186-193.	7.1	108
40	Biochemical Characterization of Diverse Stat5b-Binding Enhancers That Mediate Growth Hormone-Activated Insulin-Like Growth Factor-I Gene Transcription. PLoS ONE, 2012, 7, e50278.	2.5	14
41	TGF- \hat{l}^2 Inhibits Muscle Differentiation by Blocking Autocrine Signaling Pathways Initiated by IGF-II. Molecular Endocrinology, 2011, 25, 128-137.	3.7	33
42	Gene regulation by growth hormone. Pediatric Nephrology, 2010, 25, 651-658.	1.7	24
43	Selective Signaling by Akt2 Promotes Bone Morphogenetic Protein 2-Mediated Osteoblast Differentiation. Molecular and Cellular Biology, 2010, 30, 1018-1027.	2.3	72
44	Long Range Interactions Regulate Igf2 Gene Transcription during Skeletal Muscle Differentiation. Journal of Biological Chemistry, 2010, 285, 38969-38977.	3.4	37
45	Distinct Alterations in Chromatin Organization of the Two IGF-I Promoters Precede Growth Hormone-Induced Activation of IGF-I Gene Transcription. Molecular Endocrinology, 2010, 24, 779-789.	3.7	40
46	Defining the Epigenetic Actions of Growth Hormone: Acute Chromatin Changes Accompany GH-Activated Gene Transcription. Molecular Endocrinology, 2010, 24, 2038-2049.	3.7	48
47	Dispersed Chromosomal Stat5b-binding Elements Mediate Growth Hormone-activated Insulin-like Growth Factor-I Gene Transcription. Journal of Biological Chemistry, 2010, 285, 17636-17647.	3.4	54
48	Akt promotes BMP2-mediated osteoblast differentiation and bone development. Journal of Cell Science, 2009, 122, 716-726.	2.0	180
49	Distinct actions of Akt1 and Akt2 in skeletal muscle differentiation. Journal of Cellular Physiology, 2009, 219, 503-511.	4.1	67
50	Molecular biology, genetics and biochemistry of the repulsive guidance molecule family. Biochemical Journal, 2009, 422, 393-403.	3.7	54
51	Pro-protein convertases control the maturation and processing of the iron-regulatory protein, RGMc/hemojuvelin. BMC Biochemistry, 2008, 9, 9.	4.4	35
52	Insulin-Like Growth Factor (IGF) Binding Protein-5 Blocks Skeletal Muscle Differentiation by Inhibiting IGF Actions. Molecular Endocrinology, 2008, 22, 206-215.	3.7	44
53	Insulin-Like Growth Factor-Binding Protein-5 Inhibits Osteoblast Differentiation and Skeletal Growth by Blocking Insulin-Like Growth Factor Actions. Molecular Endocrinology, 2008, 22, 1238-1250.	3.7	55
54	Selective binding of RGMc/hemojuvelin, a key protein in systemic iron metabolism, to BMP-2 and neogenin. American Journal of Physiology - Cell Physiology, 2008, 294, C994-C1003.	4.6	44

#	Article	IF	CITATIONS
55	In Vivo Transcript Profiling and Phylogenetic Analysis Identifies Suppressor of Cytokine Signaling 2 as a Direct Signal Transducer and Activator of Transcription 5b Target in Liver. Molecular Endocrinology, 2007, 21, 293-311.	3.7	70
56	Signal Transducer and Activator of Transcription (Stat) 5b-Mediated Inhibition of Insulin-Like Growth Factor Binding Protein-1 Gene Transcription: A Mechanism for Repression of Gene Expression by Growth Hormone. Molecular Endocrinology, 2007, 21, 1443-1457.	3.7	35
57	Complex biosynthesis of the muscle-enriched iron regulator RGMc. Journal of Cell Science, 2006, 119, 3273-3283.	2.0	57
58	Control of MyoD Function during Initiation of Muscle Differentiation by an Autocrine Signaling Pathway Activated by Insulin-like Growth Factor-II. Journal of Biological Chemistry, 2006, 281, 29962-29971.	3.4	102
59	Characterization of Distinct Stat5b Binding Sites That Mediate Growth Hormone-stimulated IGF-I Gene Transcription. Journal of Biological Chemistry, 2006, 281, 3190-3197.	3.4	83
60	Complex biosynthesis of RGMc/Hemojuvelin, a Muscleâ€Enriched Regulator of Systemic Iron Metabolism. FASEB Journal, 2006, 20, A106.	0.5	0
61	Molecular physiology, pathology, and regulation of the growth hormone/insulin-like growth factor-l system. Pediatric Nephrology, 2005, 20, 295-302.	1.7	46
62	Permissive Roles of Phosphatidyl Inositol 3-Kinase and Akt in Skeletal Myocyte Maturation. Molecular Biology of the Cell, 2004, 15, 497-505.	2.1	61
63	In vivo regulation of growth hormone-stimulated gene transcription by STAT5b. American Journal of Physiology - Endocrinology and Metabolism, 2004, 286, E393-E401.	3.5	84
64	Mini-review: estrogen action in the uterus and insulin-like growth factor-I. Growth Hormone and IGF Research, 2004, 14, 431-435.	1.1	23
65	Gene discovery by microarray: identification of novel genes induced during growth factor-mediated muscle cell survival and differentiation. Genomics, 2004, 84, 876-889.	2.9	42
66	Insulin-like growth factor action and skeletal muscle growth, an in vivo perspective. Growth Hormone and IGF Research, 2003, 13, 303-305.	1.1	20
67	Autocrine Growth Factor Signaling by Insulin-like Growth Factor-II Mediates MyoD-stimulated Myocyte Maturation. Journal of Biological Chemistry, 2003, 278, 41109-41113.	3.4	87
68	Mechanisms of Growth Hormone (GH) Action. Journal of Biological Chemistry, 2003, 278, 51261-51266.	3.4	164
69	Acute Control of Insulin-like Growth Factor-I Gene Transcription by Growth Hormone through Stat5b. Journal of Biological Chemistry, 2003, 278, 22696-22702.	3.4	161
70	Molecular physiology of IGF-I expression. Journal of Pediatric Endocrinology and Metabolism, 2002, 15 Suppl 5, 1455-8.	0.9	2
71	Hormonal Control of Insulin-like Growth Factor I Gene Transcription in Human Osteoblasts. Journal of Biological Chemistry, 2001, 276, 31238-31246.	3.4	32
72	Coordinate Control of Muscle Cell Survival by Distinct Insulin-like Growth Factor Activated Signaling Pathways. Journal of Cell Biology, 2000, 151, 1131-1140.	5 . 2	70

#	Article	IF	CITATION
73	A Calcineurin-NFATc3-Dependent Pathway Regulates Skeletal Muscle Differentiation and Slow Myosin Heavy-Chain Expression. Molecular and Cellular Biology, 2000, 20, 6600-6611.	2.3	22
74	CCAAT/Enhancer-binding Protein $\hat{\Gamma}$ Is a Critical Regulator of Insulin-like Growth Factor-I Gene Transcription in Osteoblasts. Journal of Biological Chemistry, 1999, 274, 10609-10617.	3.4	56
75	Molecular Biology of IGF-I and IGF-II., 1999, , 19-35.		21
76	Essential promoter elements are located within the 5′ untranslated region of human insulin-like growth factor-I exon I. Molecular and Cellular Endocrinology, 1997, 126, 153-163.	3.2	53
77	Functional Analysis of the Rat Insulin-Like Growth Factor I Gene and Identification of an IGF-I Gene Promoter. DNA and Cell Biology, 1992, 11, 301-313.	1.9	132
78	Structure and Function of a Human Insulin-like Growth Factor-I Gene Promoter. Molecular Endocrinology, 1991, 5, 1964-1972.	3.7	101
79	Evolution of Insulin-Like Growth Factor II: Characterization of the Mouse IGF-II Gene and Identification of Two Pseudo-Exons. DNA and Cell Biology, 1990, 9, 725-735.	1.9	137
80	A Novel Human Insulin-Like Growth Factor I Messenger RNA is Expressed in Normal and Tumor Cells. Molecular Endocrinology, 1990, 4, 1914-1920.	3.7	57
81	Insulin-Like Growth Factors I and II. Peptide, Messenger Ribonucleic Acid and Gene Structures, Serum, and Tissue Concentrations*. Endocrine Reviews, 1989, 10, 68-91.	20.1	1,729