Shashwat S Banerjee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6943369/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nanoparticle Properties Modulate Their Effect on the Human Blood Functions. BioNanoScience, 2021, 11, 816-824.	1.5	0
2	Designing 3D-nanosubstrates mimicking biological cell growth: pitfalls of using 2D substrates in the evaluation of anticancer efficiency. Nanoscale, 2021, 13, 17473-17485.	2.8	2
3	Water-powered self-propelled magnetic nanobot for rapid and highly efficient capture of circulating tumor cells. Communications Chemistry, 2021, 4, .	2.0	15
4	A graphene-sandwiched DNA nano-system: regulation of intercalated doxorubicin for cellular localization. Nanoscale Advances, 2020, 2, 5746-5759.	2.2	2
5	Nanocarrier anticancer drug-conjugates cause higher cellular deformations: culpable for mischief. Biomaterials Science, 2020, 8, 5729-5738.	2.6	5
6	Self-Propelling Targeted Magneto-Nanobots for Deep Tumor Penetration and pH-Responsive Intracellular Drug Delivery. Scientific Reports, 2020, 10, 4703.	1.6	57
7	Cell deformation and acquired drug resistance: elucidating the major influence of drug-nanocarrier delivery systems. Journal of Materials Chemistry B, 2020, 8, 1852-1862.	2.9	10
8	Cellular regeneration and proliferation on polymeric 3D inverse-space substrates and the effect of doxorubicin. Nanoscale Advances, 2020, 2, 2315-2325.	2.2	3
9	Selective Cell Isolation by Transferrin Functionalized Silane–Carbon Soot Mediated Superhydrophobic Micropatterns. Advanced Materials Interfaces, 2018, 5, 1701581.	1.9	2
10	Biofunctionalized Capillary Flow Channel Platform Integrated with 3D Nanostructured Matrix to Capture Circulating Tumor Cells. Advanced Materials Interfaces, 2017, 4, 1600934.	1.9	8
11	Designing Multicomponent Nanosystems for Rapid Detection of Circulating Tumor Cells. Methods in Molecular Biology, 2017, 1530, 271-281.	0.4	4
12	Budding trends in integrated pest management using advanced micro- and nano-materials: Challenges and perspectives. Journal of Environmental Management, 2016, 184, 157-169.	3.8	86
13	Calcium phosphate nanocapsule crowned multiwalled carbon nanotubes for pH triggered intracellular anticancer drug release. Journal of Materials Chemistry B, 2015, 3, 3931-3939.	2.9	20
14	Self-propelled carbon nanotube based microrockets for rapid capture and isolation of circulating tumor cells. Nanoscale, 2015, 7, 8684-8688.	2.8	25
15	Prodrug Conjugate Strategies in Targeted Anticancer Drug Delivery Systems. Advances in Delivery Science and Technology, 2015, , 367-387.	0.4	1
16	Structure effect of carbon nanovectors in regulation of cellular responses. Biomaterials Science, 2014, 2, 57-66.	2.6	4
17	Biophysical Interactions of Polyamidoamine Dendrimer Coordinated Fe ₃ O ₄ Nanoparticles with Insulin. Journal of Biomedical Nanotechnology, 2014, 10, 1286-1293.	0.5	5
18	Chemical synthesis and sensing in inexpensive thread-based microdevices. Sensors and Actuators B: Chemical, 2013, 186, 439-445.	4.0	39

#	Article	IF	CITATIONS
19	Cell Targeting: Transferrinâ€Mediated Rapid Targeting, Isolation, and Detection of Circulating Tumor Cells by Multifunctional Magnetoâ€Dendritic Nanosystem (Adv. Healthcare Mater. 6/2013). Advanced Healthcare Materials, 2013, 2, 770-770.	3.9	1
20	Fabrication of pHâ€Tunable Calcium Phosphate Nanocapsules via Dendrimerâ€Templated Assembly for Intracellular Lysosomal Release of Drugs. Particle and Particle Systems Characterization, 2013, 30, 494-500.	1.2	7
21	Transferrinâ€Mediated Rapid Targeting, Isolation, and Detection of Circulating Tumor Cells by Multifunctional Magnetoâ€Đendritic Nanosystem. Advanced Healthcare Materials, 2013, 2, 800-805.	3.9	27
22	Poly(ethylene glycol) versus Dendrimer Prodrug Conjugates: Influence of Prodrug Architecture in Cellular Uptake and Transferrin Mediated Targeting. Journal of Biomedical Nanotechnology, 2013, 9, 776-789.	0.5	12
23	Poly(ethylene glycol)-Prodrug Conjugates: Concept, Design, and Applications. Journal of Drug Delivery, 2012, 2012, 1-17.	2.5	201
24	Resorbable Tricalcium Phosphates for Bone Tissue Engineering: Influence of <scp><scp>SrO</scp></scp> Doping. Journal of the American Ceramic Society, 2012, 95, 3095-3102.	1.9	12
25	ZnO, SiO ₂ , and SrO doping in resorbable tricalcium phosphates: Influence on strength degradation, mechanical properties, and <i>in vitro</i> bone–cell material interactions. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2012, 100B, 2203-2212.	1.6	40
26	Cellular imaging using biocompatible dendrimer-functionalized graphene oxide-based fluorescent probe anchored with magnetic nanoparticles. Nanotechnology, 2012, 23, 415101.	1.3	74
27	PEC-conjugated highly dispersive multifunctional magnetic multi-walled carbon nanotubes for cellular imaging. Nanoscale, 2012, 4, 837-844.	2.8	68
28	Enhancing Surface Interactions with Colon Cancer Cells on a Transferrin onjugated 3D Nanostructured Substrate. Small, 2012, 8, 1657-1663.	5.2	18
29	Understanding in vivo response and mechanical property variation in MgO, SrO and SiO2 doped β-TCP. Bone, 2011, 48, 1282-1290.	1.4	136
30	pH Tunable Fluorescent Calcium Phosphate Nanocomposite for Sensing and Controlled Drug Delivery. Advanced Engineering Materials, 2011, 13, B10-B17.	1.6	22
31	Zn- and Mg-Doped Hydroxyapatite Nanoparticles for Controlled Release of Protein. Langmuir, 2010, 26, 4958-4964.	1.6	184
32	Direct laser processing of a tantalum coating on titanium for bone replacement structures. Acta Biomaterialia, 2010, 6, 2329-2334.	4.1	265
33	Understanding the influence of MgO and SrO binary doping on the mechanical and biological properties of I ² -TCP ceramics. Acta Biomaterialia, 2010, 6, 4167-4174.	4.1	152
34	Biphasic Resorbable Calcium Phosphate Ceramic for Bone Implants and Local Alendronate Delivery. Advanced Engineering Materials, 2010, 12, B148.	1.6	29
35	Grafting of 2â€Hydroxypropylâ€Î²â€€yclodextrin on Gum Arabicâ€Modified Iron Oxide Nanoparticles as a Magnetic Carrier for Targeted Delivery of Hydrophobic Anticancer Drug. International Journal of Applied Ceramic Technology, 2010, 7, 111-118.	1.1	34
36	Electrically Polarized Biphasic Calcium Phosphates: Adsorption and Release of Bovine Serum Albumin. Langmuir, 2010, 26, 16625-16629.	1.6	86

SHASHWAT S BANERJEE

#	Article	IF	CITATIONS
37	A multifunctional magnetic nanocarrier bearing fluorescent dye for targeted drug delivery by enhanced two-photon triggered release. Nanotechnology, 2009, 20, 185103.	1.3	48
38	Cyclodextrin-conjugated nanocarrier for magnetically guided delivery of hydrophobic drugs. Journal of Nanoparticle Research, 2009, 11, 2071-2078.	0.8	34
39	Synthesis of nanocrystalline hydroxyapatite using surfactant template systems: Role of templates in controlling morphology. Materials Science and Engineering C, 2009, 29, 2294-2301.	3.8	59
40	Cyclodextrin conjugated magnetic colloidal nanoparticles as a nanocarrier for targeted anticancer drug delivery. Nanotechnology, 2008, 19, 265602.	1.3	54
41	Multifunctional pH-sensitive magnetic nanoparticles for simultaneous imaging, sensing and targeted intracellular anticancer drug delivery. Nanotechnology, 2008, 19, 505104.	1.3	94
42	Removal of Disperse Dyes from Aqueous Solution Using Sawdust and BDTDAâ€Sawdust. Journal of Dispersion Science and Technology, 2007, 28, 1066-1071.	1.3	7
43	Glucose-Grafted Gum Arabic Modified Magnetic Nanoparticles:Â Preparation and Specific Interaction with Concanavalin A. Chemistry of Materials, 2007, 19, 3667-3672.	3.2	48
44	Fast removal of copper ions by gum arabic modified magnetic nano-adsorbent. Journal of Hazardous Materials, 2007, 147, 792-799.	6.5	471
45	Magnetic Nanoparticles Grafted with Cyclodextrin for Hydrophobic Drug Delivery. Chemistry of Materials, 2007, 19, 6345-6349.	3.2	186
46	Treatment of oil spill by sorption technique using fatty acid grafted sawdust. Chemosphere, 2006, 64, 1026-1031.	4.2	178
47	Treatment of oil spills using organo-fly ash. Desalination, 2006, 195, 32-39.	4.0	49
48	Effect of quaternary ammonium cations on dye sorption to fly ash from aqueous media. Journal of Colloid and Interface Science, 2006, 303, 477-483.	5.0	16
49	Removal of Cr(VI) and Hg(II) from Aqueous Solutions Using Fly Ash and Impregnated Fly Ash. Separation Science and Technology, 2005, 39, 1611-1629.	1.3	88
50	Removal of Nickel(II) and Zinc(II) from Wastewater Using Fly Ash and Impregnated Fly Ash. Separation Science and Technology, 2003, 38, 1015-1032.	1.3	52
51	Computer Vision and Machine Learning Techniques for Quantification and Predictive Modeling of Intracellular Antiâ€Cancer Drug Delivery by Nanocarriers. Applied AI Letters, 0, , e50.	1.4	1