Tomas Martin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6943350/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Solidâ€&upported Tetrahydropyranâ€Based Hybrid Dipeptide Catalysts for Michael Addition of Aldehydes to Nitrostyrenes. Advanced Synthesis and Catalysis, 2022, 364, 2822-2829.	2.1	2
2	Intramolecular Nicholas Reaction Enables the Stereoselective Synthesis of Strained Cyclooctynes. Molecules, 2021, 26, 1629.	1.7	3
3	The Bone Regeneration Capacity of BMP-2 + MMP-10 Loaded Scaffolds Depends on the Tissue Status. Pharmaceutics, 2021, 13, 979.	2.0	3
4	Enantiodivergent Cyclization by Inversion of the Reactivity in Ambiphilic Molecules. Angewandte Chemie - International Edition, 2020, 59, 17077-17083.	7.2	4
5	Enantiodivergent Cyclization by Inversion of the Reactivity in Ambiphilic Molecules. Angewandte Chemie, 2020, 132, 17225-17231.	1.6	1
6	Conformational Control of Tetrahydropyranâ€Based Hybrid Dipeptide Catalysts Improves Activity and Stereoselectivity. Advanced Synthesis and Catalysis, 2019, 361, 2141-2147.	2.1	8
7	Efficient synthesis of benzocyclotrimer analogues by Negishi cross-coupling and intramolecular nucleophilic substitution. Chemical Communications, 2018, 54, 362-365.	2.2	3
8	Tetrahydropyranâ€Based Hybrid Dipeptides as Asymmetric Catalysts for Michael Addition of Aldehydes to βâ€Nitrostyrenes. Advanced Synthesis and Catalysis, 2017, 359, 576-583.	2.1	15
9	Front Cover Picture: Tetrahydropyranâ€Based Hybrid Dipeptides as Asymmetric Catalysts for Michael Addition of Aldehydes to βâ€Nitrostyrenes (Adv. Synth. Catal. 4/2017). Advanced Synthesis and Catalysis, 2017, 359, 533-533.	2.1	0
10	Tailor-made copper(ii) coordination polymers based on the C3symmetric methanetriacetate as a ligand. CrystEngComm, 2017, 19, 376-390.	1.3	1
11	Oxidation with air by ascorbate-driven quinone redox cycling. Chemical Communications, 2015, 51, 7027-7030.	2.2	50
12	Synthesis of New Benzocyclotrimer Analogues: New Receptors for Tetramethylammonium Ion Recognition. Organic Letters, 2015, 17, 2912-2915.	2.4	9
13	Ascorbic Acid as an Initiator for the Direct CH Arylation of (Hetero)arenes with Anilines Nitrosated In Situ. Angewandte Chemie - International Edition, 2014, 53, 2181-2185.	7.2	139
14	Expedient Synthesis of C3-Symmetric Hexasubstituted Benzenes via Nicholas Reaction/[2 + 2 + 2] Cycloaddition. New Platforms for Molecular Recognition. Organic Letters, 2014, 16, 552-555.	2.4	16
15	β-Hydroxy-γ-lactones as nucleophiles in the Nicholas reaction for the synthesis of oxepene rings. Enantioselective formal synthesis of (â^')-isolaurepinnacin and (+)-rogioloxepane A. Chemical Communications, 2014, 50, 3685-3688.	2.2	22
16	Synthesis and Conformational Analysis of Cyclic Homooligomers from Pyranoid ε‣ugar Amino Acids. Chemistry - A European Journal, 2014, 20, 4007-4022.	1.7	17
17	Three new europium(III) methanetriacetate metal-organic frameworks: the influence of synthesis on the product topology. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2014, 70, 19-27.	0.5	5
18	Epoxideâ€Opening Cascades Triggered by a Nicholas Reaction: Total Synthesis of Teurilene. Angewandte Chemie - International Edition, 2013, 52, 3659-3662.	7.2	36

#	Article	IF	CITATIONS
19	A Novel Approach for the Evaluation of Positive Cooperative Guest Binding: Kinetic Consequences of Structural Tightening. Chemistry - A European Journal, 2013, 19, 7042-7048.	1.7	18
20	Correlation between Conformational Equilibria of Free Host and Guest Binding Affinity in Non-preorganized Receptors. Journal of Organic Chemistry, 2013, 78, 7785-7795.	1.7	15
21	Strategies for the Synthesis of Cyclic Ethers of Marine Natural Products. Synlett, 2013, 25, 12-32.	1.0	30
22	Iron(III) atalyzed Halogenations by Substitution of Sulfonate Esters. Advanced Synthesis and Catalysis, 2011, 353, 963-972.	2.1	18
23	Enantioselective Cooperativity Between Intraâ€Receptor Interactions and Guest Binding: Quantification of Reinforced Chiral Recognition. Angewandte Chemie - International Edition, 2011, 50, 10616-10620.	7.2	30
24	Fluorescent Î ² -Blockers as Tools to Study Presynaptic Mechanisms of Neurosecretion. Pharmaceuticals, 2011, 4, 713-725.	1.7	7
25	The Construction of Open Gd ^{III} Metal–Organic Frameworks Based on Methanetriacetic Acid: New Objects with an Old Ligand. Chemistry - A European Journal, 2010, 16, 4037-4047.	1.7	37
26	An Approach to <i>Lauroxanes</i> by Iterative Use of Co ₂ (CO) ₆ -Acetylenic Complexes. A Formal Synthesis of (+)-Laurencin. Journal of Organic Chemistry, 2010, 75, 6660-6672.	1.7	37
27	Thermodynamic Analysis of Systems Formed by Alkyl Esters with α,ï‰-Alkyl Dibromides: New Experimental Information and the Use of a Dense Database to Describe Their Behavior Using the UNIFAC Group Contribution Method and the COSMO-RS Methodology. Industrial & Engineering Chemistry Research, 2010, 49, 12726-12739.	1.8	5
28	Crystal structures of self-assembled nanotubes from flexible macrocycles by weak interactions. CrystEngComm, 2010, 12, 3676.	1.3	13
29	The construction of open frameworks based on methanetriacetic acid: new objects with an old ligand. Acta Crystallographica Section A: Foundations and Advances, 2010, 66, s85-s85.	0.3	0
30	Synthesis of α,α′â€Disubstituted Linear Ethers by an Intermolecular Nicholas Reaction – Application to the Synthesis of (+)â€ <i>cis</i> /(–)â€ <i>trans</i> ‣authisan and (+)â€ <i>cis</i> /(+)â€ <i>trans</i> â€Obtusan. Eurœpean ournal of Organic Chemistry, 2009, 2009, 554-563.		20
31	Quantification of a CH–í€ Interaction Responsible for Chiral Discrimination and Evaluation of Its Contribution to Enantioselectivity. Angewandte Chemie - International Edition, 2009, 48, 7803-7808.	7.2	62
32	Insect Growth Regulatory Effects of Linear Diterpenoids and Derivatives fromBaccharis thymifolia. Journal of Natural Products, 2008, 71, 190-194.	1.5	38
33	A Practical Method for Selective Cleavage of a <i>tert</i> â€Butoxycarbamoyl <i>N</i> â€Protective Group from <i>N</i> , <i>N</i> â€Diprotected αâ€Amino Acid Derivatives Using Montmorillonite Kâ€10. European Journal of Organic Chemistry, 2007, 2007, 5050-05058.	1.2	11
34	Samarium(II) promoted stereoselective synthesis of antiproliferative cis-β-alkoxy-γ-alkyl-γ-lactones. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 18-21.	1.0	8
35	Synthesis and antiproliferative activity of (2R,3R)-disubstituted tetrahydropyrans. Part 2: Effect of side chain homologation. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 780-783.	1.0	11
36	Stereoselective Synthesis of Eight-Membered Cyclic Ethers by Tandem Nicholas Reaction/Ring-Closing Metathesis:  A Short Synthesis of (+)-cis-Lauthisan. Organic Letters, 2006, 8, 871-873.	2.4	53

#	Article	IF	CITATIONS
37	Synthesis and antiproliferative activity of (2R,3R)-disubstituted tetrahydropyrans. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 6135-6138.	1.0	16
38	A Short and Efficient Enantiomeric Synthesis of Antitumor Fused Tetrahydrofurans. European Journal of Organic Chemistry, 2006, 2006, 1910-1916.	1.2	8
39	Enhancement of Drug Cytotoxicity by Silicon Containing Groups. Letters in Drug Design and Discovery, 2006, 3, 29-34.	0.4	12
40	Molecular Simplification in Bioactive Molecules:Â Formal Synthesis of (+)-Muconin. Journal of Organic Chemistry, 2006, 71, 2339-2345.	1.7	34
41	Montmorillonite K-10 as a mild acid for the Nicholas reaction. Tetrahedron Letters, 2005, 46, 2829-2832.	0.7	34
42	Synthesis and cation complexation properties of new macrolides. Tetrahedron, 2005, 61, 8177-8191.	1.0	20
43	Montmorillonite K-10 as a Mild Acid for the Nicholas Reaction ChemInform, 2005, 36, no.	0.1	0
44	The tert-butyl dimethyl silyl group as an enhancer of drug cytotoxicity against human tumor cells. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 3536-3539.	1.0	35
45	A Convenient and Chemoselective One-Pot Oxidation/Wittig Reaction for the C2-Homologation of Carbohydrate-Derived Glycols. Journal of Organic Chemistry, 2005, 70, 10099-10101.	1.7	38
46	Stereoselective Intramolecular Nicholas Reaction Using Epoxides as Nucleophiles ChemInform, 2004, 35, no.	0.1	0
47	The cis-2-alkyl-3-oxy-tetrahydropyran unit as a building block for new ionophores with C2-symmetry. Tetrahedron Letters, 2004, 45, 5215-5219.	0.7	16
48	Stereoselective Intramolecular Nicholas Reaction Using Epoxides as Nucleophiles. Organic Letters, 2004, 6, 565-568.	2.4	30
49	Stereoselective Synthesis of Cyclic Ethers by Intramolecular Trapping of Dicobalt Hexacarbonyl-Stabilized Propargylic Cations ChemInform, 2003, 34, no.	0.1	0
50	Stereoselective Synthesis of Cyclic Ethers by Intramolecular Trapping of Dicobalt Hexacarbonyl-Stabilized Propargylic Cations ChemInform, 2003, 34, no.	0.1	0
51	Stereoselective Synthesis of Cyclic Ethers by Intramolecular Trapping of Dicobalt Hexacarbonyl-Stabilized Propargylic Cationsâ€. Journal of Organic Chemistry, 2003, 68, 3216-3224.	1.7	39
52	Glycoluril ribbons tethered by complementary hydrogen bonds. Chemical Communications, 2003, , 1638-1639.	2.2	14
53	Stereoselective synthesis of syn-2,7-disubstituted-4,5-oxepenes. Tetrahedron, 2002, 58, 1913-1919.	1.0	24
54	Chiral Softballs:Â Synthesis and Molecular Recognition Properties. Journal of the American Chemical Society, 2001, 123, 5213-5220.	6.6	94

#	Article	IF	CITATIONS
55	Double Cationic Propargylation:  From Linear to Polycyclic Ethers. Organic Letters, 2001, 3, 3289-3291.	2.4	22
56	Stereocontrolled Synthesis of Unsaturated Halohydrins from Unsaturated Epoxides. Journal of Organic Chemistry, 2001, 66, 7231-7233.	1.7	25
57	β-Hydroxy-γ-lactones as Chiral Building Blocks for the Enantioselective Synthesis of Marine Natural Productsâ€. Journal of Organic Chemistry, 2001, 66, 1420-1428.	1.7	58
58	Chiral Guests and Their Ghosts in Reversibly Assembled Hosts. Angewandte Chemie - International Edition, 2000, 39, 2130-2132.	7.2	97
59	A short synthesis of trans-(+)-laurediol. Tetrahedron Letters, 2000, 41, 2503-2505.	0.7	24
60	Emergent Conformational Preferences of a Self-Assembling Small Molecule:Â Structure and Dynamics in a Tetrameric Capsule. Journal of the American Chemical Society, 2000, 122, 10991-10996.	6.6	47
61	Guest exchange in an encapsulation complex: A supramolecular substitution reaction. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 8344-8347.	3.3	54
62	Structural Examination of Supramolecular Architectures by Electrospray Ionization Mass Spectrometry. European Journal of Organic Chemistry, 1999, 1999, 1325-1331.	1.2	48
63	Chiral Microenvironments in Self-Assembled Capsules. Journal of the American Chemical Society, 1999, 121, 10281-10285.	6.6	66
64	Characterization of Self-Assembling Encapsulation Complexes in the Gas Phase and Solution. Journal of the American Chemical Society, 1999, 121, 2133-2138.	6.6	72
65	Enantiospecific synthesis of α-amino acid semialdehydes: a key step for the synthesis of unnatural unsaturated and saturated α-amino acids. Tetrahedron: Asymmetry, 1998, 9, 3381-3394.	1.8	88
66	SYNTHESES OF AVENACIOLIDE AND RELATEDbisLACTONES. A REVIEW. Organic Preparations and Procedures International, 1998, 30, 291-324.	0.6	23
67	Structural Rules Governing Self-Assembly Emerge from New Molecular Capsules. Journal of the American Chemical Society, 1998, 120, 819-820.	6.6	46
68	Chiral Spaces: Dissymmetric Capsules Through Self-Assembly. Science, 1998, 279, 1021-1023.	6.0	204
69	Molecular Assembly and Encapsulation Directed by Hydrogen-Bonding Preferences and the Filling of Space. , 1998, 281, 1842-1845.		42
70	A General Approach to the Asymmetric Synthesis of Unsaturated Lipidic α-Amino Acids. The First Synthesis of α-Aminoarachidonic Acid. Journal of Organic Chemistry, 1998, 63, 3741-3744.	1.7	81
71	Biomimetic-Type Synthesis of Halogenated Tetrahydrofurans fromLaurencia. Total Synthesis of trans-(+)-Deacetylkumausyne. Journal of Organic Chemistry, 1997, 62, 1570-1571.	1.7	42
72	A New Stereoselective Synthesis of (â^')-Isoavenaciolide and (â^')-Avenaciolide. Journal of Organic Chemistry, 1996, 61, 8448-8452.	1.7	17

#	Article	IF	CITATIONS
73	Efficient Stereoselective Synthesis of the Enantiomers of Highly Substituted Paraconic Acids. Journal of Organic Chemistry, 1996, 61, 6450-6453.	1.7	43
74	A new approach to functionalized cyclobutanes: Stereoselective synthesis of the enantiomers of grandisol and fraganol. Tetrahedron: Asymmetry, 1995, 6, 1151-1164.	1.8	26
75	Stereoselective Synthesis of Highly Substituted .gammaLactones and Butenolides by Intramolecular Michael Addition of Enantiomerically Enriched .gamma[(Phenylthio)acyl]oxy .alpha.,.betaUnsaturated Esters. Journal of Organic Chemistry, 1994, 59, 4461-4472.	1.7	31
76	Stereoselective Synthesis of Highly Substituted .gammaLactones by Diastereoselective Alkylation of .alpha(Benzenesulfonyl) Derivatives with Unusual Facial Selectivity. Journal of Organic Chemistry, 1994, 59, 8081-8091.	1.7	11