
Ekaterina L Grishchuk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6943199/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Unique Role of Vimentin Networks in Compression Stiffening of Cells and Protection of Nuclei from Compressive Stress. Nano Letters, 2022, 22, 4725-4732.	9.1	21
2	Permitted and restricted steps of human kinetochore assembly in mitotic cell extracts. Molecular Biology of the Cell, 2021, 32, 1241-1255.	2.1	4
3	Structural view of the yeast Dam1 complex, a ring-shaped molecular coupler for the dynamic microtubule end. Essays in Biochemistry, 2020, 64, 359-370.	4.7	0
4	Microtubule end conversion mediated by motors and diffusing proteins with no intrinsic microtubule end-binding activity. Nature Communications, 2019, 10, 1673.	12.8	33
5	The binding of Borealin to microtubules underlies a tension independent kinetochore-microtubule error correction pathway. Nature Communications, 2019, 10, 682.	12.8	43
6	Clot Contraction Drives the Translocation of Procoagulant Platelets to Thrombus Surface. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 37-47.	2.4	74
7	Probing Mitotic CENP-E Kinesin with the Tethered Cargo Motion Assay and Laser Tweezers. Biophysical Journal, 2018, 114, 2640-2652.	0.5	19
8	In vitro reconstitution of lateral to end-on conversion of kinetochore–microtubule attachments. Methods in Cell Biology, 2018, 144, 307-327.	1.1	11
9	Biophysics of Microtubule End Coupling at the Kinetochore. Progress in Molecular and Subcellular Biology, 2017, 56, 397-428.	1.6	18
10	Microtubule Tip Tracking by the Spindle and Kinetochore Protein Ska1 Requires Diverse Tubulin-Interacting Surfaces. Current Biology, 2017, 27, 3666-3675.e6.	3.9	28
11	Mechanisms to Avoid and Correct Erroneous Kinetochore-Microtubule Attachments. Biology, 2017, 6, 1.	2.8	138
12	Bistability of a coupled Aurora B kinase-phosphatase system in cell division. ELife, 2016, 5, e10644.	6.0	48
13	Basic mechanism for biorientation of mitotic chromosomes is provided by the kinetochore geometry and indiscriminate turnover of kinetochore microtubules. Molecular Biology of the Cell, 2015, 26, 3985-3998.	2.1	37
14	Molecular and Mechanical Causes of Microtubule Catastrophe and Aging. Biophysical Journal, 2015, 109, 2574-2591.	0.5	103
15	Microtubule detyrosination guides chromosomes during mitosis. Science, 2015, 348, 799-803.	12.6	202
16	Multisite phosphorylation of the NDC80 complex gradually tunes its microtubule-binding affinity. Molecular Biology of the Cell, 2015, 26, 1829-1844.	2.1	97
17	Tubulin Bond Energies and Microtubule Biomechanics Determined from Nanoindentation <i>in Silico</i> . Journal of the American Chemical Society, 2014, 136, 17036-17045.	13.7	78
18	Kinetochore–microtubule attachment throughout mitosis potentiated by the elongated stalk of the kinetochore kinesin CENP-E. Molecular Biology of the Cell, 2014, 25, 2272-2281.	2.1	40

Ekaterina L Grishchuk

#	Article	IF	CITATIONS
19	Accurate phosphoregulation of kinetochore–microtubule affinity requires unconstrained molecular interactions. Journal of Cell Biology, 2014, 206, 45-59.	5.2	97
20	Preparation of Segmented Microtubules to Study Motions Driven by the Disassembling Microtubule Ends. Journal of Visualized Experiments, 2014, , .	0.3	22
21	Kinetochore kinesin CENP-E is a processive bi-directional tracker of dynamic microtubule tips. Nature Cell Biology, 2013, 15, 1079-1088.	10.3	122
22	Highly Transient Molecular Interactions Underlie the Stability of Kinetochore–Microtubule Attachment During Cell Division. Cellular and Molecular Bioengineering, 2013, 6, 393-405.	2.1	15
23	A Slippery Walk to the Microtubule-End. Biophysical Journal, 2013, 104, 2324-2325.	0.5	1
24	Conserved and divergent features of kinetochores and spindle microtubule ends from five species. Journal of Cell Biology, 2013, 200, 459-474.	5.2	81
25	Long tethers provide high-force coupling of the Dam1 ring to shortening microtubules. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 7708-7713.	7.1	64
26	The Kinetochore-Bound Ska1 Complex Tracks Depolymerizing Microtubules and Binds to Curved Protofilaments. Developmental Cell, 2012, 23, 968-980.	7.0	194
27	Tubulin depolymerization may be an ancient biological motor. Journal of Cell Science, 2010, 123, 3425-3434.	2.0	83
28	In Vitro Assays to Study the Tracking of Shortening Microtubule Ends and to Measure Associated Forces. Methods in Cell Biology, 2010, 95, 657-676.	1.1	7
29	Toward a comprehensive and quantitative understanding of intracellular microtubule organization. Molecular Systems Biology, 2009, 5, 251.	7.2	1
30	Tubulin heterodimers remain functional for one cell cycle after the inactivation of tubulinâ€folding cofactor D in fission yeast cells. Yeast, 2009, 26, 235-247.	1.7	7
31	The Human Kinetochore Ska1 Complex Facilitates Microtubule Depolymerization-Coupled Motility. Developmental Cell, 2009, 16, 374-385.	7.0	247
32	Fibrils Connect Microtubule Tips with Kinetochores: A Mechanism to Couple Tubulin Dynamics to Chromosome Motion. Cell, 2008, 135, 322-333.	28.9	186
33	The Dam1 ring binds microtubules strongly enough to be a processive as well as energy-efficient coupler for chromosome motion. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 15423-15428.	7.1	87
34	In search of an optimal ring to couple microtubule depolymerization to processive chromosome motions. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 19017-19022.	7.1	71
35	Research Article: <i>In vivo</i> Evaluation of Indolyl Glyoxamides in the Phenotypic Sea Urchin Embryo Assay. Chemical Biology and Drug Design, 2007, 70, 485-490.	3.2	22
36	Microtubule depolymerization can drive poleward chromosome motion in fission yeast. EMBO Journal, 2006, 25, 4888-4896.	7.8	108

#	Article	IF	CITATIONS
37	Chromosome segregation in fission yeast with mutations in the tubulin folding cofactor D. Current Genetics, 2006, 50, 281-294.	1.7	12
38	Force production by disassembling microtubules. Nature, 2005, 438, 384-388.	27.8	252
39	A Molecular-Mechanical Model of the Microtubule. Biophysical Journal, 2005, 88, 3167-3179.	0.5	104
40	Chromosome-Microtubule Interactions During Mitosis. Annual Review of Cell and Developmental Biology, 2002, 18, 193-219.	9.4	223
41	A Screen for Genes Involved in the Anaphase Proteolytic Pathway Identifies tsm1+, a Novel Schizosaccharomyces pombe Gene Important for Microtubule Integrity. Genetics, 1998, 149, 1251-1264.	2.9	12