David M Mosser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6942714/publications.pdf Version: 2024-02-01

		31902	19136
122	26,028	53	118
papers	citations	h-index	g-index
135	135	135	34390
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Exploring the full spectrum of macrophage activation. Nature Reviews Immunology, 2008, 8, 958-969.	10.6	7,332
2	Macrophage Activation and Polarization: Nomenclature and Experimental Guidelines. Immunity, 2014, 41, 14-20.	6.6	4,638
3	The many faces of macrophage activation. Journal of Leukocyte Biology, 2003, 73, 209-212.	1.5	1,546
4	The Isolation and Characterization of Murine Macrophages. Current Protocols in Immunology, 2008, 83, Unit 14.1.	3.6	1,090
5	Interleukinâ€10: new perspectives on an old cytokine. Immunological Reviews, 2008, 226, 205-218.	2.8	885
6	FcγRI (CD64) Contributes Substantially to Severity of Arthritis, Hypersensitivity Responses, and Protection from Bacterial Infection. Immunity, 2002, 16, 391-402.	6.6	827
7	Biochemical and functional characterization of three activated macrophage populations. Journal of Leukocyte Biology, 2006, 80, 1298-1307.	1.5	691
8	The Role of IL-10 in Promoting Disease Progression in Leishmaniasis. Journal of Immunology, 2001, 166, 1141-1147.	0.4	447
9	Intrinsic antibody-dependent enhancement of microbial infection in macrophages: disease regulation by immune complexes. Lancet Infectious Diseases, The, 2010, 10, 712-722.	4.6	334
10	NF-κB1 (p50) Homodimers Differentially Regulate Pro- and Anti-inflammatory Cytokines in Macrophages. Journal of Biological Chemistry, 2006, 281, 26041-26050.	1.6	331
11	Selective Suppression of Interleukin-12 Induction after Macrophage Receptor Ligation. Journal of Experimental Medicine, 1997, 185, 1977-1985.	4.2	327
12	Reversal of Proinflammatory Responses by Ligating the Macrophage FcÎ ³ Receptor Type I. Journal of Experimental Medicine, 1998, 188, 217-222.	4.2	299
13	Monocyte subpopulations and their differentiation patterns during infection. Journal of Leukocyte Biology, 2007, 82, 244-252.	1.5	281
14	Macrophages and the Recovery from Acute and Chronic Inflammation. Annual Review of Physiology, 2017, 79, 567-592.	5.6	275
15	Reversing Lipopolysaccharide Toxicity by Ligating the Macrophage FcÎ ³ Receptors. Journal of Immunology, 2001, 166, 6861-6868.	0.4	249
16	A role for IgG immune complexes during infection with the intracellular pathogen Leishmania. Journal of Experimental Medicine, 2005, 201, 747-754.	4.2	232
17	The third component of complement (C3) is responsible for the intracellular survival of Leishmania major. Nature, 1987, 327, 329-331.	13.7	196
18	A novel phenotype for an activated macrophage: the type 2 activated macrophage. Journal of Leukocyte Biology, 2002, 72, 101-6.	1.5	196

#	Article	IF	CITATIONS
19	Production of a hemolytic factor by Candida albicans. Infection and Immunity, 1994, 62, 5154-5156.	1.0	195
20	ERK Activation Following Macrophage FcγR Ligation Leads to Chromatin Modifications at the IL-10 Locus. Journal of Immunology, 2005, 175, 469-477.	0.4	190
21	Macrophages and the maintenance of homeostasis. Cellular and Molecular Immunology, 2021, 18, 579-587.	4.8	182
22	Regulatory macrophages: Setting the Threshold for Therapy. European Journal of Immunology, 2011, 41, 2498-2502.	1.6	180
23	Role of the 85-Kilobase Plasmid and Plasmid-Encoded Virulence-Associated Protein A in Intracellular Survival and Virulence of <i>Rhodococcus equi</i> . Infection and Immunity, 1999, 67, 3548-3557.	1.0	177
24	Cutting Edge: Biasing Immune Responses by Directing Antigen to Macrophage FcÎ ³ Receptors. Journal of Immunology, 2002, 168, 3697-3701.	0.4	167
25	Survival and replication of Rhodococcus equi in macrophages. Infection and Immunity, 1994, 62, 4167-4175.	1.0	162
26	Pattern recognition receptors in innate immunity, host defense, and immunopathology. American Journal of Physiology - Advances in Physiology Education, 2013, 37, 284-291.	0.8	158
27	Activation of Murine Macrophages. Current Protocols in Immunology, 2008, 83, Unit 14.2.	3.6	150
28	Activation of the MAPK, ERK, following <i>Leishmania amazonensis</i> Infection of Macrophages. Journal of Immunology, 2007, 178, 1077-1085.	0.4	133
29	Cooperation between Reactive Oxygen and Nitrogen Intermediates in Killing of Rhodococcus equi by Activated Macrophages. Infection and Immunity, 2000, 68, 3587-3593.	1.0	125
30	TLR stimulation initiates a CD39-based autoregulatory mechanism that limits macrophage inflammatory responses. Blood, 2013, 122, 1935-1945.	0.6	122
31	Dynamic and Transient Remodeling of the Macrophage IL-10 Promoter during Transcription. Journal of Immunology, 2006, 177, 1282-1288.	0.4	116
32	Platelet activation attracts a subpopulation of effector monocytes to sites of <i>Leishmania major</i> infection. Journal of Experimental Medicine, 2011, 208, 1253-1265.	4.2	115
33	Dual Transcriptome Profiling of <i>Leishmania</i> -Infected Human Macrophages Reveals Distinct Reprogramming Signatures. MBio, 2016, 7, .	1.8	111
34	A heparin-binding activity on Leishmania amastigotes which mediates adhesion to cellular proteoglycans Journal of Cell Biology, 1993, 123, 759-766.	2.3	107
35	Leishmania promastigotes require opsonic complement to bind to the human leukocyte integrin Mac-1 (CD11b/CD18) Journal of Cell Biology, 1992, 116, 511-520.	2.3	105
36	Simultaneous transcriptional profiling of Leishmania major and its murine macrophage host cell reveals insights into host-pathogen interactions. BMC Genomics, 2015, 16, 1108.	1.2	105

#	Article	IF	CITATIONS
37	Interaction of <i>Leishmania</i> gp63 with Cellular Receptors for Fibronectin. Infection and Immunity, 1999, 67, 4477-4484.	1.0	105
38	Leishmania parasites and their ploys to disrupt macrophage activation. Current Opinion in Hematology, 2000, 7, 26-31.	1.2	96
39	Extrinsic and intrinsic control of macrophage inflammatory responses. Journal of Leukocyte Biology, 2013, 94, 913-919.	1.5	93
40	Suppression of IL-12 Transcription in Macrophages Following Fcl ³ Receptor Ligation. Journal of Immunology, 2001, 166, 4498-4506.	0.4	92
41	The Isolation and Characterization of Murine Macrophages. Current Protocols in Immunology, 2015, 111, 14.1.1.	3.6	89
42	A role for complement receptor-like molecules in iron acquisition by Candida albicans Journal of Experimental Medicine, 1992, 175, 1643-1651.	4.2	88
43	The influence of IgG density and macrophage Fc (gamma) receptor cross-linking on phagocytosis and IL-10 production. Immunology Letters, 2010, 133, 70-77.	1.1	79
44	Transcriptomic profiling of gene expression and RNA processing during <i>Leishmania major</i> differentiation. Nucleic Acids Research, 2015, 43, 6799-6813.	6.5	77
45	The Expression of Exogenous Genes in Macrophages: Obstacles and Opportunities. Methods in Molecular Biology, 2009, 531, 123-143.	0.4	76
46	Leishmania promastigotes are recognized by the macrophage receptor for advanced glycosylation endproducts Journal of Experimental Medicine, 1987, 165, 140-145.	4.2	75
47	Stimulatory and inhibitory signals originatingfrom the macrophage FcÎ ³ receptors. Microbes and Infection, 2001, 3, 131-139.	1.0	75
48	Leishmania major-human macrophage interactions: cooperation between Mac-1 (CD11b/CD18) and complement receptor type 1 (CD35) in promastigote adhesion. Infection and Immunity, 1996, 64, 2206-2215.	1.0	75
49	The Neonatal FcR-Mediated Presentation of Immune-Complexed Antigen Is Associated with Endosomal and Phagosomal pH and Antigen Stability in Macrophages and Dendritic Cells. Journal of Immunology, 2011, 186, 4674-4686.	0.4	71
50	Meta-transcriptome Profiling of the Human-Leishmania braziliensis Cutaneous Lesion. PLoS Neglected Tropical Diseases, 2016, 10, e0004992.	1.3	71
51	Leishmania-macrophage interactions: multiple receptors, multiple ligands and diverse cellular responses. Seminars in Cell Biology, 1993, 4, 315-322.	3.5	63
52	Intermediate Monocytes Contribute to Pathologic Immune Response in <i>Leishmania braziliensis</i> Infections. Journal of Infectious Diseases, 2015, 211, 274-282.	1.9	62
53	TLRs, macrophages, and NK cells: Our understandings of their functions in uterus and ovary. International Immunopharmacology, 2011, 11, 1442-1450.	1.7	61
54	Receptor mediated subversion of macrophage cytokine production by intracellular pathogens. Current Opinion in Immunology, 1999, 11, 406-411.	2.4	58

#	Article	IF	CITATIONS
55	Host and parasite responses in human diffuse cutaneous leishmaniasis caused by L. amazonensis. PLoS Neglected Tropical Diseases, 2019, 13, e0007152.	1.3	58
56	Macrophage polarization in intestinal inflammation and gut homeostasis. Inflammation Research, 2020, 69, 1163-1172.	1.6	58
57	Neutrophils have a protective role during early stages of <i><scp>L</scp>eishmania amazonensis</i> infection in <scp>BALB</scp> /c mice. Parasite Immunology, 2014, 36, 13-31.	0.7	55
58	The generation of macrophages with anti-inflammatory activity in the absence of STAT6 signaling. Journal of Leukocyte Biology, 2015, 98, 395-407.	1.5	55
59	Cooperation between CR1 (CD35) and CR3 (CD11b/CD18) in the binding of complement-opsonized particles. Journal of Leukocyte Biology, 1996, 59, 883-890.	1.5	54
60	Immunological characterization of eristostatin and echistatin binding sites on αIIb β3 and αVβ3 integrins. Biochemical Journal, 1996, 317, 817-825.	1.7	53
61	High-molecular-weight proteins of nontypeable Haemophilus influenzae mediate bacterial adhesion to cellular proteoglycans. Infection and Immunity, 1994, 62, 4028-4033.	1.0	53
62	Peroxisome Proliferator-Activated Receptor-γ Regulates the Expression of Alveolar Macrophage Macrophage Colony-Stimulating Factor. Journal of Immunology, 2008, 181, 235-242.	0.4	51
63	Complement-mediated "bystander―damage initiates host NLRP3 inflammasome activation. Journal of Cell Science, 2016, 129, 1928-39.	1.2	51
64	Leishmania species: Mechanisms of complement activation by five strains of promastigotes. Experimental Parasitology, 1986, 62, 394-404.	0.5	50
65	The Expression of Heparin-Binding Epidermal Growth Factor-Like Growth Factor by Regulatory Macrophages. Journal of Immunology, 2009, 182, 1929-1939.	0.4	48
66	Assessing Student Understanding of Host Pathogen Interactions Using a Concept Inventory. Journal of Microbiology and Biology Education, 2009, 10, 43-50.	0.5	47
67	Innate Immune Responses to <i>Rhodococcus equi</i> . Journal of Immunology, 2004, 173, 1914-1924.	0.4	46
68	T Cell Biasing by Activated Dendritic Cells. Journal of Immunology, 2004, 173, 955-961.	0.4	45
69	Rhodococcus equi: An emerging opportunistic pathogen. Trends in Microbiology, 1996, 4, 29-33.	3.5	44
70	A Model for Using a Concept Inventory as a Tool for Students' Assessment and Faculty Professional Development. CBE Life Sciences Education, 2010, 9, 408-416.	1.1	44
71	The Regulation of Th1 Responses by the p38 MAPK. Journal of Immunology, 2010, 185, 6205-6213.	0.4	42
72	Modulating macrophage function with IgG immune complexes. Journal of Endotoxin Research, 2002, 8, 477-481.	2.5	42

#	Article	IF	CITATIONS
73	Leishmania -Derived Murine Monocyte Chemoattractant Protein 1 Enhances the Recruitment of a Restrictive Population of CC Chemokine Receptor 2-Positive Macrophages. Infection and Immunity, 2007, 75, 653-665.	1.0	40
74	Treatment of murine macrophages with interferon-Î ³ inhibits their ability to bind leishmania promastigotes. Journal of Leukocyte Biology, 1992, 52, 369-376.	1.5	39
75	High-Molecular-Weight Surface-Exposed Proteins of Haemophilus Influenzae Mediate Binding to Macrophages. Journal of Infectious Diseases, 1994, 169, 425-429.	1.9	39
76	Leishmania amazonensis:The Phagocytosis of Amastigotes by Macrophages. Experimental Parasitology, 1998, 88, 161-171.	0.5	39
77	Platelet factor 4 efficiently reverses heparin anticoagulation in the rat without adverse effects of heparin-protamine complexes Circulation, 1992, 85, 1102-1109.	1.6	38
78	A Faculty Team Works to Create Content Linkages among Various Courses to Increase Meaningful Learning of Targeted Concepts of Microbiology. CBE Life Sciences Education, 2007, 6, 155-162.	1.1	37
79	Role of complement in mouse macrophage binding of Haemophilus influenzae type b Journal of Clinical Investigation, 1990, 85, 208-218.	3.9	37
80	The taming of IL-12: suppressing the production of proinflammatory cytokines. Journal of Leukocyte Biology, 1999, 65, 543-551.	1.5	36
81	Matrix Metalloproteinase 9 Production by Monocytes is Enhanced by TNF and Participates in the Pathology of Human Cutaneous Leishmaniasis. PLoS Neglected Tropical Diseases, 2014, 8, e3282.	1.3	36
82	Cleaved high molecular weight kininogen binds directly to the integrin CD11b/CD18 (Mac-1) and blocks adhesion to fibrinogen and ICAM-1. Blood, 2000, 95, 3788-3795.	0.6	34
83	Editorial: Switching on arginase in M2 macrophages. Journal of Leukocyte Biology, 2011, 90, 839-841.	1.5	34
84	Trypanosoma brucei: Recognition in vitro of two developmental forms by murine macrophages. Experimental Parasitology, 1982, 54, 310-316.	0.5	33
85	IFN-Î ³ Prevents Adenosine Receptor (A2bR) Upregulation To Sustain the Macrophage Activation Response. Journal of Immunology, 2015, 195, 3828-3837.	0.4	33
86	Purinergic Signaling to Terminate TLR Responses in Macrophages. Frontiers in Immunology, 2016, 7, 74.	2.2	32
87	Upregulated IL-1β in dysferlin-deficient muscle attenuates regeneration by blunting the response to pro-inflammatory macrophages. Skeletal Muscle, 2015, 5, 24.	1.9	26
88	Regulatory Macrophages Inhibit Alternative Macrophage Activation and Attenuate Pathology Associated with Fibrosis. Journal of Immunology, 2019, 203, 2130-2140.	0.4	25
89	Measuring Opsonic Phagocytosis via FcÎ ³ Receptors and Complement Receptors on Macrophages. Current Protocols in Immunology, 2011, 95, Unit 14.27.	3.6	24
90	Functional characterization of bovine TIRAP and MyD88 in mediating bacterial lipopolysaccharide-induced endothelial NF-κB activation and apoptosis. Comparative Immunology, Microbiology and Infectious Diseases, 2009, 32, 477-490.	0.7	22

#	Article	IF	CITATIONS
91	Vaccination against the Intracellular Pathogens Leishmania major and L. amazonensis by Directing CD40 Ligand to Macrophages. Infection and Immunity, 2001, 69, 3255-3263.	1.0	21
92	OPNâ€a induces muscle inflammation by increasing recruitment and activation of proâ€inflammatory macrophages. Experimental Physiology, 2016, 101, 1285-1300.	0.9	19
93	Mercury enhances susceptibility to murine leishmaniasis. Parasite Immunology, 2001, 23, 633-640.	0.7	17
94	A sensitive flow cytometric methodology for studying the binding of L. chagasito canine peritoneal macrophages. BMC Infectious Diseases, 2005, 5, 39.	1.3	17
95	The transition of M-CSF–derived human macrophages to a growth-promoting phenotype. Blood Advances, 2020, 4, 5460-5472.	2.5	17
96	IL-18 contributes to susceptibility to Leishmania amazonensis infection by macrophage-independent mechanisms. Cytokine, 2015, 74, 327-330.	1.4	16
97	PD-1 Blockade Modulates Functional Activities of Exhausted-Like T Cell in Patients With Cutaneous Leishmaniasis. Frontiers in Immunology, 2021, 12, 632667.	2.2	16
98	Cardiac Macrophages: How to Mend a Broken Heart. Immunity, 2014, 40, 3-5.	6.6	15
99	Reduced Pathology following Infection with Transgenic Leishmania major Expressing Murine CD40 Ligand. Infection and Immunity, 2007, 75, 3140-3149.	1.0	12
100	Pro-inflammatory cytokine Interleukin- $1\hat{l}^2$ (IL- $1\hat{l}^2$) controls Leishmania infection. Cytokine, 2018, 112, 27-31.	1.4	12
101	Cleaved high molecular weight kininogen binds directly to the integrin CD11b/CD18 (Mac-1) and blocks adhesion to fibrinogen and ICAM-1. Blood, 2000, 95, 3788-3795.	0.6	12
102	An assay to quantitate the binding of Rhodococcus equi to macrophages. Veterinary Immunology and Immunopathology, 1992, 32, 339-350.	0.5	11
103	The modulation of macrophage activation by tyrosine phosphorylation. Frontiers in Bioscience - Landmark, 2002, 7, d1494.	3.0	11
104	Activation of Murine Macrophages. Current Protocols in Immunology, 2015, 111, 14.2.1.	3.6	11
105	Immune Complex–Driven Generation of Human Macrophages with Anti-Inflammatory and Growth-Promoting Activity. Journal of Immunology, 2020, 205, 102-112.	0.4	9
106	Using a Concept Inventory to Reveal Student Thinking Associated with Common Misconceptions about Antibiotic Resistance. Journal of Microbiology and Biology Education, 2017, 18, .	0.5	8
107	Humoral immunity in leishmaniasis – Prevention or promotion of parasite growth?. Cytokine: X, 2020, 2, 100046.	0.5	8
108	Transcriptomic landscape of skin lesions in cutaneous leishmaniasis reveals a strong CD8 ⁺ T cell immunosenescence signature linked to immunopathology. Immunology, 2021, 164, 754-765.	2.0	8

#	Article	IF	CITATIONS
109	An assay to quantitate the binding of leishmania amastigotes to macrophages. Journal of Immunological Methods, 1990, 130, 235-242.	0.6	6
110	Immunohistochemical study of renal fibropoiesis associated with dogs naturally and experimentally infected with two different strains of <i>Leishmania</i> (L.) <i>infantum</i> . International Journal of Experimental Pathology, 2019, 100, 222-233.	0.6	5
111	High-Density-Immune-Complex Regulatory Macrophages Promote Recovery of Experimental Colitis in Mice. Inflammation, 2021, 44, 1069-1082.	1.7	4
112	Kinetics of an experimental inflammatory reaction induced by Leishmania major during the implantation of paraffin tablets in mice. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2000, 437, 429-435.	1.4	3
113	Murine immune response induced by Leishmania major during the implantation of paraffin tablets. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2010, 457, 609-618.	1.4	3
114	Cloning and characterization of the ribosomal l11 gene from Leishmania spp Molecular and Biochemical Parasitology, 1995, 71, 261-264.	0.5	2
115	Mechanisms of Microbial Entry and Endocytosis by Mononuclear Phagocytes. , 1984, 13, 71-96.		2
116	Regulatory Macrophages and the Maintenance of Homeostasis. , 2014, , 77-87.		1
117	The Interaction of Leishmania SPP. With Phagocytic Receptors on Macrophages: The Role of Serum Opsonins. World Class Parasites, 2002, , 89-103.	0.3	0
118	Rhodococcus equi: Pathogenesis and Replication in Macrophages. Infectious Agents and Pathogenesis, 2002, , 185-200.	0.1	0
119	P030 Subsets of circulating monocytes differently contribute to immunopathology in cutaneous leishmaniasis. Cytokine, 2012, 59, 527-528.	1.4	0
120	Monocyte subpopulations as important biomarkers of resistence and susceptibility during experimental infection with Leishmania (Leishmania) major. Biomedicine and Pharmacotherapy, 2018, 107, 1530-1539.	2.5	0
121	Characterization of breast tumor metabolites reâ€editing macrophage function. FASEB Journal, 2008, 22, 1076.22.	0.2	0

122 The Functional Heterogeneity of Activated Macrophages. , 0, , 325-340.