Vit Janik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6942497/publications.pdf

Version: 2024-02-01

759190 794568 29 378 12 19 citations h-index g-index papers 31 31 31 284 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	A Review on In Situ Mechanical Testing of Coatings. Coatings, 2022, 12, 299.	2.6	7
2	High-Entropy Coatings (HEC) for High-Temperature Applications: Materials, Processing, and Properties. Coatings, 2022, 12, 691.	2.6	19
3	The role of microstructure and local crystallographic orientation near porosity defects on the high cycle fatigue life of an additive manufactured Ti-6Al-4V. Materials Characterization, 2020, 169, 110576.	4.4	33
4	Correlative analysis of interaction between recrystallization and precipitation during sub-critical annealing of cold-rolled low-carbon V and Ti–V bearing microalloyed steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 785, 139381.	5.6	14
5	A Gibbs Energy Balance Model for Growth Via Diffusional Growth-Ledges. ISIJ International, 2019, 59, 573-582.	1.4	2
6	A phase-field model investigating the role of elastic strain energy during the growth of closely spaced neighbouring interphase precipitates. Computational Materials Science, 2018, 142, 437-443.	3.0	5
7	Quasi in-situ analysis of geometrically necessary dislocation density in α-fibre and γ-fibre during static recrystallization in cold-rolled low-carbon Ti-V bearing microalloyed steel. Materials Characterization, 2018, 145, 686-696.	4.4	19
8	Comparison of superplastic forming abilities of as-cast AZ91 magnesium alloy prepared by twin roll casting and WE43 magnesium alloy. Materialwissenschaft Und Werkstofftechnik, 2018, 49, 1206-1212.	0.9	3
9	Nano-mechanical properties of Fe-Mn-Al-C lightweight steels. Scientific Reports, 2018, 8, 9065.	3.3	22
10	A phase-field model for interphase precipitation in V-micro-alloyed structural steels. Computational Materials Science, 2017, 137, 257-265.	3.0	5
11	Predicting the Warm Forming Behavior of WE43 and AA5086 Alloys. Procedia Engineering, 2017, 173, 897-904.	1.2	1
12	Inâ€situ heated stage scanning electron microscope analysis and characterisation of recrystallization behaviour of a 7000 series alloy with nickel additions. Materialwissenschaft Und Werkstofftechnik, 2017, 48, 876-881.	0.9	4
13	Interphase Precipitation – An Interfacial Segregation Model. ISIJ International, 2017, 57, 524-532.	1.4	10
14	Analysis of the extent of interphase precipitation in V-HSLA steels through in-situ characterization of the $\hat{I}^3/\hat{I}\pm$ transformation. Materials Characterization, 2016, 115, 83-89.	4.4	20
15	<i>In Situ</i> Characterisation of Austenite/Ferrite Transformation Kinetics and Modelling of Interphase Precipitation Inter-Sheet Spacing in V Microalloyed HSLA Steels. Materials Science Forum, 2016, 879, 356-362.	0.3	1
16	Zn Diffusion and \hat{l}_{\pm} -Fe(Zn) Layer Growth During Annealing of Zn-Coated B Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 400-411.	2.2	28
17	Effect of Grain Size Distribution on Recrystallisation Kinetics in a Fe-30Ni Model Alloy., 2016,, 153-158.		O
18	Application of In-Situ Material Characterization Methods to Describe Role of Mo During Processing of Vbearing Micro-Alloyed Steels., 2015,, 289-295.		0

#	Article	IF	CITATIONS
19	Superplastic forming ability of as-cast AZ91 Mg alloy prepared by twin roll casting. Materialwissenschaft Und Werkstofftechnik, 2014, 45, 815-821.	0.9	2
20	Elevated-temperature impact toughness of Mg–(Gd, Y)–Zr alloy. Scripta Materialia, 2013, 68, 885-888.	5.2	22
21	Creep and Fracture Behavior of Peak-Aged Mg-11Y-5Gd-2Zn-0.5Zr (wtÂpct). Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 3338-3350.	2.2	32
22	Creep behavior of Mg–11Y–5Gd–2Zn–0.5Zr (wt.%) at 573K. Materials Science & Droperties, Microstructure and Processing, 2012, 546, 239-247.	5.6	31
23	The elevated-temperature mechanical behavior of peak-aged Mg–10Gd–3Y–0.4Zr Alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 3105-3112.	5.6	56
24	Microstructural investigation of the failure mechanisms after creep exposure of Mg–Y–Nd–Zn–Mn alloy. International Journal of Materials Research, 2009, 100, 296-300.	0.3	2
25	Phase composition and morphology development in WE-type alloys modified by high Zn content. International Journal of Materials Research, 2009, 100, 292-295.	0.3	2
26	Creep behaviour of the creep resistant MgY3Nd2Zn1Mn1 alloy. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2008, 489, 93-98.	5.6	25
27	Cavitation and grain boundary sliding during creep of Mg-Y-Nd-Zn-Mn alloy. Transactions of Nonferrous Metals Society of China, 2008, 18, s64-s68.	4.2	3
28	Chemical composition of new copper alloys for machining and its effect on their susceptibility to corrosion cracking. Materials and Corrosion - Werkstoffe Und Korrosion, 2007, 58, 681-686.	1.5	1
29	Influence of Thermal and Thermo-Mechanical Processing on the Creep Resistance of Mg-10Gd-3Y-0,4Zr Alloy. Materials Science Forum, 0, 675-677, 487-490.	0.3	7