
Gary W Shenk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/694237/publications.pdf Version: 2024-02-01

CADY W/ SHENK

#	Article	IF	CITATIONS
1	Development and Application of the 2010 Chesapeake Bay Watershed Total Maximum Daily Load Model. Journal of the American Water Resources Association, 2013, 49, 1042-1056.	1.0	130
2	Development of the Chesapeake Bay Watershed Total Maximum Daily Load Allocation. Journal of the American Water Resources Association, 2013, 49, 986-1006.	1.0	87
3	Sediment dynamics and implications for management: State of the science from longâ€ŧerm research in the Chesapeake Bay watershed, USA. Wiley Interdisciplinary Reviews: Water, 2020, 7, e1454.	2.8	56
4	Phosphorus and the Chesapeake Bay: Lingering Issues and Emerging Concerns for Agriculture. Journal of Environmental Quality, 2019, 48, 1191-1203.	1.0	48
5	Computing Atmospheric Nutrient Loads to the Chesapeake Bay Watershed and Tidal Waters. Journal of the American Water Resources Association, 2013, 49, 1025-1041.	1.0	43
6	Socio-technical scales in socio-environmental modeling: Managing a system-of-systems modeling approach. Environmental Modelling and Software, 2021, 135, 104885.	1.9	38
7	Enhanced HSPF Model Structure for Chesapeake Bay Watershed Simulation. Journal of Environmental Engineering, ASCE, 2012, 138, 949-957.	0.7	33
8	Cross-Media Models of the Chesapeake Bay Watershed and Airshed. Water Quality and Ecosystems Modeling, 2000, 1, 91-122.	0.0	32
9	The Chesapeake Bay program modeling system: Overview and recommendations for future development. Ecological Modelling, 2021, 456, 109635.	1.2	30
10	Dynamic Optimal Ground Water Remediation by Granular Activated Carbon. Journal of Water Resources Planning and Management - ASCE, 1998, 124, 59-64.	1.3	22
11	Using Multiple Watershed Models to Predict Water, Nitrogen, and Phosphorus Discharges to the Patuxent Estuary ¹ . Journal of the American Water Resources Association, 2013, 49, 15-39.	1.0	21
12	Supporting cost-effective watershed management strategies for Chesapeake Bay using a modeling and optimization framework. Environmental Modelling and Software, 2021, 144, 105141.	1.9	17
13	Total Maximum Daily Load Criteria Assessment Using Monitoring and Modeling Data. Journal of the American Water Resources Association, 2013, 49, 1134-1149.	1.0	16
14	Major point and nonpoint sources of nutrient pollution to surface water have declined throughout the Chesapeake Bay watershed. Environmental Research Communications, 2022, 4, 045012.	0.9	16
15	Atmospheric nitrogen deposition in the Chesapeake Bay watershed: A history of change. Atmospheric Environment, 2021, 251, 118277.	1.9	14
16	Advancing estuarine ecological forecasts: seasonal hypoxia in Chesapeake Bay. Ecological Applications, 2021, 31, e02384.	1.8	13
17	Nitrogen reductions have decreased hypoxia in the Chesapeake Bay: Evidence from empirical and numerical modeling. Science of the Total Environment, 2022, 814, 152722.	3.9	13
18	A SHORT HISTORY OF CHESAPEAKE BAY MODELING AND THE NEXT GENERATION OF WATERSHED AND ESTUARINE MODELS. Proceedings of the Water Environment Federation, 2002, 2002, 569-582.	0.0	12

GARY W SHENK

#	Article	IF	CITATIONS
19	Nutrient and Solids Controls in Virginia's Chesapeake Bay Tributaries. Journal of Water Resources Planning and Management - ASCE, 2002, 128, 179-189.	1.3	10
20	Influence of Reservoir Infill on Coastal Deep Water Hypoxia. Journal of Environmental Quality, 2016, 45, 887-893.	1.0	9
21	Mechanisms Controlling Climate Warming Impact on the Occurrence of Hypoxia in Chesapeake Bay. Journal of the American Water Resources Association, 2022, 58, 855-875.	1.0	9
22	Using Geographically Isolated Loading Scenarios to Analyze Nitrogen and Phosphorus Exchanges and Explore Tailored Nutrient Control Strategies for Efficient Management. Environmental Modeling and Assessment, 2016, 21, 437-454.	1.2	7
23	Revised Method and Outcomes for Estimating Soil Phosphorus Losses from Agricultural Land in the Chesapeake Bay Watershed Model. Journal of Environmental Quality, 2017, 46, 1388-1394.	1.0	6
24	Development of a new indicator of pollutant loads and its application to the Chesapeake Bay watershed. River Research and Applications, 2011, 27, 202-212.	0.7	4
25	Title is missing!. Water Quality and Ecosystems Modeling, 2000, 1, 253-269.	0.0	3
26	SIMULATING THE CHESAPEAKE BAY WATERSHED WITH TIME-VARYING LAND USE AND MANAGEMENT ACTIONS Proceedings of the Water Environment Federation, 2002, 2002, 225-237.	0.0	3
27	Quantifying the Response of Nitrogen Speciation to Hydrology in the Chesapeake Bay Watershed Using a Multilevel Modeling Approach. Journal of the American Water Resources Association, 2022, 58, 792-804.	1.0	1
28	APPLICATION OF VISUALIZATION TECHNOLOGY ON WATERSHED MODEL EVALUATION. Proceedings of the Water Environment Federation, 2000, 2000, 1332-1362.	0.0	0
29	Volume Analysis for Attainability of Water Quality Criteria for Three Loading Constituents. , 2004, , .		0
30	Forecast of Summer Anoxia in the Chesapeake Bay. , 2006, , .		0