Bing Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6942257/publications.pdf

Version: 2024-02-01

172207 143772 3,398 66 29 57 h-index citations g-index papers 71 71 71 4887 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Rheb Activates mTOR by Antagonizing Its Endogenous Inhibitor, FKBP38. Science, 2007, 318, 977-980.	6.0	350
2	Fatty acid oxidation and carnitine palmitoyltransferase I: emerging therapeutic targets in cancer. Cell Death and Disease, 2016, 7, e2226-e2226.	2.7	334
3	PKD at the crossroads of DAG and PKC signaling. Trends in Pharmacological Sciences, 2006, 27, 317-323.	4.0	301
4	Differential Localization of Protein Kinase C $\hat{\Gamma}$ by Phorbol Esters and Related Compounds Using a Fusion Protein with Green Fluorescent Protein. Journal of Biological Chemistry, 1999, 274, 37233-37239.	1.6	170
5	Potent and Selective Disruption of Protein Kinase D Functionality by a Benzoxoloazepinolone. Journal of Biological Chemistry, 2008, 283, 33516-33526.	1.6	124
6	Long non-coding RNA regulation of epithelial–mesenchymal transition in cancer metastasis. Cell Death and Disease, 2016, 7, e2254-e2254.	2.7	117
7	Protein Kinase D3 (PKD3) Contributes to Prostate Cancer Cell Growth and Survival Through a PKCÎμ/PKD3 Pathway Downstream of Akt and ERK 1/2. Cancer Research, 2008, 68, 3844-3853.	0.4	112
8	Long non-coding RNA C2dat1 regulates CaMKIIδ expression to promote neuronal survival through the NF-IºB signaling pathway following cerebral ischemia. Cell Death and Disease, 2016, 7, e2173-e2173.	2.7	98
9	Diacylglycerol (DAG)-lactones, a New Class of Protein Kinase C (PKC) Agonists, Induce Apoptosis in LNCaP Prostate Cancer Cells by Selective Activation of PKCα. Journal of Biological Chemistry, 2002, 277, 645-655.	1.6	88
10	Protein Kinase C-Independent Effects of Protein Kinase D3 in Glucose Transport in L6 Myotubes. Molecular Pharmacology, 2005, 67, 152-162.	1.0	82
11	Protein kinase D1 drives pancreatic acinar cell reprogramming and progression to intraepithelial neoplasia. Nature Communications, 2015, 6, 6200.	5.8	79
12	Novel protein kinase D inhibitors cause potent arrest in prostate cancer cell growth and motility. BMC Chemical Biology, 2010, 10, 5.	1.6	75
13	PKD2 and PKD3 Promote Prostate Cancer Cell Invasion via uPA by Shifting Balance Between NF-κB and HDAC1. Journal of Cell Science, 2012, 125, 4800-11.	1.2	7 3
14	The Lipophilicity of Phorbol Esters as a Critical Factor in Determining the Pattern of Translocation of Protein Kinase C $\hat{\Gamma}$ Fused to Green Fluorescent Protein. Journal of Biological Chemistry, 2000, 275, 12136-12146.	1.6	71
15	Protein kinase D as a potential new target for cancer therapy. Biochimica Et Biophysica Acta: Reviews on Cancer, 2010, 1806, 183-192.	3.3	69
16	Zn2+ Inhibits Mitochondrial Movement in Neurons by Phosphatidylinositol 3-Kinase Activation. Journal of Neuroscience, 2005, 25, 9507-9514.	1.7	67
17	Interaction between Protein Kinase $\hat{C14}$ and the Vanilloid Receptor Type 1. Journal of Biological Chemistry, 2004, 279, 53674-53682.	1.6	60
18	Protein kinase D signaling in cancer: A friend or foe?. Biochimica Et Biophysica Acta: Reviews on Cancer, 2017, 1868, 283-294.	3.3	58

#	Article	IF	Citations
19	Design, Synthesis, and Biological Evaluation of PKD Inhibitors. Pharmaceutics, 2011, 3, 186-228.	2.0	54
20	GPCR-mediated PLC $\hat{l}^2\hat{l}^3$ /PKC \hat{l}^2 /PKD signaling pathway regulates the cofilin phosphatase slingshot 2 in neutrophil chemotaxis. Molecular Biology of the Cell, 2015, 26, 874-886.	0.9	45
21	Role of Hydrophobic Residues in the C1b Domain of Protein Kinase C $\hat{\Gamma}$ on Ligand and Phospholipid Interactions. Journal of Biological Chemistry, 2001, 276, 19580-19587.	1.6	43
22	Protein kinase Ds promote tumor angiogenesis through mast cell recruitment and expression of angiogenic factors in prostate cancer microenvironment. Journal of Experimental and Clinical Cancer Research, 2019, 38, 114.	3. 5	41
23	Both the Catalytic and Regulatory Domains of Protein Kinase C Chimeras Modulate the Proliferative Properties of NIH 3T3 Cells. Journal of Biological Chemistry, 1997, 272, 28793-28799.	1.6	40
24	Protein kinase D1 is essential for Ras-induced senescence and tumor suppression by regulating senescence-associated inflammation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7683-7688.	3.3	39
25	SD-208, a Novel Protein Kinase D Inhibitor, Blocks Prostate Cancer Cell Proliferation and Tumor Growth In Vivo by Inducing G2/M Cell Cycle Arrest. PLoS ONE, 2015, 10, e0119346.	1.1	36
26	Development, validation and implementation of immobilized metal affinity for phosphochemicals (IMAP)-based high-throughput screening assays for low-molecular-weight compound libraries. Nature Protocols, 2008, 3, 1350-1363.	5 . 5	35
27	Selective binding of phorbol esters and diacylglycerol by individual C1 domains of the PKD family. Biochemical Journal, 2008, 411, 333-342.	1.7	34
28	Synthesis and Structureâ^'Activity Relationships of Benzothienothiazepinone Inhibitors of Protein Kinase D. ACS Medicinal Chemistry Letters, 2011, 2, 154-159.	1.3	33
29	Systematic discovery of the functional impact of somatic genome alterations in individual tumors through tumor-specific causal inference. PLoS Computational Biology, 2019, 15, e1007088.	1.5	31
30	Protein Kinase D Promotes Airway Epithelial Barrier Dysfunction and Permeability through Down-regulation of Claudin-1. Journal of Biological Chemistry, 2013, 288, 37343-37354.	1.6	30
31	A protein kinase C/protein kinase D pathway protects LNCaP prostate cancer cells from phorbol ester-induced apoptosis by promoting ERK1/2 and NF-PB activities. Carcinogenesis, 2011, 32, 1198-1206.	1.3	29
32	Multifaceted Functions of Protein Kinase D in Pathological Processes and Human Diseases. Biomolecules, 2021, 11, 483.	1.8	29
33	Ligand Structure-Activity Requirements and Phospholipid Dependence for the Binding of Phorbol Esters to Protein Kinase D. Molecular Pharmacology, 2003, 64, 1342-1348.	1.0	28
34	New Pyrazolopyrimidine Inhibitors of Protein Kinase D as Potent Anticancer Agents for Prostate Cancer Cells. PLoS ONE, 2013, 8, e75601.	1.1	28
35	Ischemic Injury-Induced CaMKIIδ and CaMKIIγ Confer Neuroprotection Through the NF-κB Signaling Pathway. Molecular Neurobiology, 2019, 56, 2123-2136.	1.9	28
36	Synthesis and biological activity of C-terminally truncated fragments of humanalphacalcitonin gene-related peptide. Journal of Medicinal Chemistry, 1993, 36, 2536-2541.	2.9	26

#	Article	IF	CITATIONS
37	Protein kinase D 3 is localized in vesicular structures and interacts with vesicle-associated membrane protein 2. Cellular Signalling, 2007, 19, 867-879.	1.7	26
38	Inducible Silencing of Protein Kinase D3 Inhibits Secretion of Tumor-Promoting Factors in Prostate Cancer. Molecular Cancer Therapeutics, 2012, 11, 1389-1399.	1.9	26
39	Calcium/Calmodulin–Dependent Protein Kinase II in Cerebrovascular Diseases. Translational Stroke Research, 2021, 12, 513-529.	2.3	26
40	Differences in molecular biological, biological and growth characteristics between the immortal and malignant hamster pancreatic cells. Carcinogenesis, 1995, 16, 931-939.	1.3	25
41	A role for zinc in regulating hypoxia-induced contractile events in pulmonary endothelium. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2011, 300, L874-L886.	1.3	25
42	Crosstalk of protein kinase C $\hat{l}\mu$ with Smad2/3 promotes tumor cell proliferation in prostate cancer cells by enhancing aerobic glycolysis. Cellular and Molecular Life Sciences, 2018, 75, 4583-4598.	2.4	24
43	The catalytic domain of PKC-ε, in reciprocal PKC-δ and -ε chimeras, is responsible for conferring tumorgenicity to NIH3T3 cells, whereas both regulatory and catalytic domains of PKC-ε contribute to in vitro transformation. Oncogene, 1998, 16, 53-60.	2.6	23
44	The V5 Domain of Protein Kinase C Plays a Critical Role in Determining the Isoform-Specific Localization, Translocation, and Biological Function of Protein Kinase C-δand -ε. Molecular Cancer Research, 2004, 2, 129-140.	1.5	23
45	In vitro cytotoxicity, pharmacokinetics, tissue distribution, and metabolism of small-molecule protein kinase D inhibitors, kb-NB142-70 and kb-NB165-09, in mice bearing human cancer xenografts. Cancer Chemotherapy and Pharmacology, 2013, 71, 331-344.	1.1	22
46	Receptors and Ligands for Autocrine Growth Pathways Are Up-regulated When Pancreatic Cancer Cells Are Adapted to Serum-Free Culture. Pancreas, 2001, 22, 293-298.	0.5	20
47	Discovery of Diverse Small Molecule Chemotypes with Cell-Based PKD1 Inhibitory Activity. PLoS ONE, 2011, 6, e25134.	1.1	20
48	A Conditional Knockout Mouse Model Reveals a Critical Role of PKD1 in Osteoblast Differentiation and Bone Development. Scientific Reports, 2017, 7, 40505.	1.6	19
49	Establishment and characterization of a new, spontaneously immortalized, pancreatic ductal cell line from the Syrian golden hamster. Cell and Tissue Research, 1995, 282, 163-174.	1.5	18
50	3-Acyloxy-2-phenalkylpropyl amides and esters of homovanillic acid as novel vanilloid receptor agonists. Bioorganic and Medicinal Chemistry Letters, 1999, 9, 2909-2914.	1.0	17
51	A Targeted Library Screen Reveals a New Inhibitor Scaffold for Protein Kinase D. PLoS ONE, 2012, 7, e44653.	1.1	16
52	Protein Kinase D2 Modulates Cell Cycle By Stabilizing Aurora A Kinase at Centrosomes. Molecular Cancer Research, 2018, 16, 1785-1797.	1.5	15
53	Enhanced TGFα-EGFR expression and P53 gene alterations contributes to gastric tumors aggressiveness. Cancer Letters, 2004, 212, 33-41.	3.2	14
54	Androgen suppresses protein kinase D1 expression through fibroblast growth factor receptor substrate 2 in prostate cancer cells. Oncotarget, 2017, 8, 12800-12811.	0.8	13

#	Article	IF	CITATIONS
55	Analysis of oncogenic activities of protein kinase D1 in head and neck squamous cell carcinoma. BMC Cancer, 2018, 18, 1107.	1.1	12
56	Individual C1 domains of PKD3 in phorbol ester-induced plasma membrane translocation of PKD3 in intact cells. Cellular Signalling, 2005, 17, 1397-1411.	1.7	11
57	Development of an arteriolar niche and self-renewal of breast cancer stem cells by lysophosphatidic acid/protein kinase D signaling. Communications Biology, 2021, 4, 780.	2.0	11
58	Genetic ablation of P65 subunit of NFâ€ŶB in mdx mice to improve muscle physiological function. Muscle and Nerve, 2017, 56, 759-767.	1.0	10
59	Comparison of Autologous Blood Clots with Fibrin Sealant as Scaffolds for Promoting Human Muscle-Derived Stem Cell-Mediated Bone Regeneration. Biomedicines, 2021, 9, 983.	1.4	7
60	Quantitative Monitoring Spatiotemporal Activation of Ras and PKD1 Using Confocal Fluorescent Microscopy. Methods in Molecular Biology, 2016, 1407, 307-323.	0.4	6
61	Carboxyfluorescein and biotin neuromedin C analogues: Synthesis and applications. Peptides, 1995, 16, 255-261.	1.2	4
62	Protein kinase D promotes airway epithelial barrier dysfunction and permeability through down-regulation of claudin-1 Journal of Biological Chemistry, 2014, 289, 20489.	1.6	3
63	Effect of protease inhibitors on peptide-stimulated amylase secretion from dispersed pancreatic acini. International Journal of Gastrointestinal Cancer, 1995, 17, 261-269.	0.4	1
64	Deficiency in Protein Kinase D Activity exacerbates postâ€stroke injuries and impairs functional recovery after ischemic stroke in Mice. FASEB Journal, 2021, 35, .	0.2	0
65	Novel protein kinase D inhibitors cause potent arrest in cancer cell growth and motility. FASEB Journal, 2010, 24, 964.12.	0.2	0
66	Abstract 3127: Protein kinase D1 downregulation facilities PMA-induced apoptosis in LNCaP prostate cancer cells. , 2010, , .		0