Cheonghee Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6942183/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electrochemical Fragmentation of Cu ₂ O Nanoparticles Enhancing Selective C–C Coupling from CO ₂ Reduction Reaction. Journal of the American Chemical Society, 2019, 141, 4624-4633.	13.7	390
2	Branched Copper Oxide Nanoparticles Induce Highly Selective Ethylene Production by Electrochemical Carbon Dioxide Reduction. Journal of the American Chemical Society, 2019, 141, 6986-6994.	13.7	260
3	Suppression of Competing Reaction Channels by Pb Adatom Decoration of Catalytically Active Cu Surfaces During CO ₂ Electroreduction. ACS Catalysis, 2019, 9, 1482-1488.	11.2	46
4	Alloy Nanocatalysts for the Electrochemical Oxygen Reduction (ORR) and the Direct Electrochemical Carbon Dioxide Reduction Reaction (CO ₂ RR). Advanced Materials, 2019, 31, e1805617.	21.0	255
5	Insight into Electrochemical CO ₂ Reduction on Surface-Molecule-Mediated Ag Nanoparticles. ACS Catalysis, 2017, 7, 779-785.	11.2	205
6	Gold catalyst reactivity for CO2 electro-reduction: From nano particle to layer. Catalysis Today, 2016, 260, 107-111.	4.4	67
7	Enhancement in carbon dioxide activity and stability on nanostructured silver electrode and the role of oxygen. Applied Catalysis B: Environmental, 2016, 180, 372-378.	20.2	70
8	Achieving Selective and Efficient Electrocatalytic Activity for CO ₂ Reduction Using Immobilized Silver Nanoparticles. Journal of the American Chemical Society, 2015, 137, 13844-13850.	13.7	575
9	One-pot synthesis of Pd@PdPt core–shell nanocubes on carbon supports. RSC Advances, 2014, 4, 63677-63680.	3.6	9
10	Shaped Ni nanoparticles with an unconventional hcp crystalline structure. Chemical Communications, 2014, 50, 6353.	4.1	35
11	Gold Nanoparticles-Based Colorimetric Assay for Cathepsin B Activity and the Efficiency of Its Inhibitors. Analytical Chemistry, 2014, 86, 3825-3833.	6.5	40
12	Performance of shape-controlled Pd nanoparticles in the selective hydrogenation of acetylene. Journal of Catalysis, 2013, 306, 146-154.	6.2	116
13	Applying Shapeâ€Controlled Pt Nanoâ€dendrites Supported on Carbon for Membraneâ€Electrode Assembly in a Proton Exchange Membrane Fuel Cell. Fuel Cells, 2013, 13, 889-894.	2.4	1
14	In situ shaping of Pt nanoparticles directly overgrown on carbon supports. Chemical Communications, 2012, 48, 6396.	4.1	37
15	A distinct platinum growth mode on shaped gold nanocrystals. Chemical Communications, 2012, 48, 257-259.	4.1	15
16	Shape-Controlled Nanocrystals for Catalytic Applications. Catalysis Surveys From Asia, 2012, 16, 14-27.	2.6	42
17	Enhanced electrocatalytic performance due to anomalous compressive strain and superior electron retention properties of highly porous Pt nanoparticles. Journal of Catalysis, 2012, 291, 69-78.	6.2	29
18	Top-down shaping of metal nanoparticles in solution: partially etched Au@Pt nanoparticles with unique morphology. Chemical Communications, 2011, 47, 8079.	4.1	16

Снеонднее Кім

#	Article	IF	CITATION
19	Chemical and Thermal Stability of Pt Nanocubes Synthesized with Various Surface-Capping Agents. Journal of Nanoscience and Nanotechnology, 2010, 10, 233-239.	0.9	23
20	Shape- and Composition-Controlled Pt–Fe–Co Nanoparticles for Electrocatalytic Methanol Oxidation. Topics in Catalysis, 2010, 53, 686-693.	2.8	28
21	Electrocatalytic properties of platinum overgrown on various shapes of gold nanocrystals. Journal of Molecular Catalysis A, 2010, 333, 6-10.	4.8	23
22	Platinum dendrites with controlled sizes for oxygen reduction reaction. Electrochemistry Communications, 2010, 12, 1596-1599.	4.7	49
23	Surface-specific overgrowth of platinum on shaped gold nanocrystals. Physical Chemistry Chemical Physics, 2009, 11, 9759.	2.8	34
24	Change in the catalytic reactivity of Pt nanocubes in the presence of different surface-capping agents. Catalysis Communications, 2009, 10, 1305-1309.	3.3	73
25	Shape effect of Pt nanocrystals on electrocatalytic hydrogenation. Catalysis Communications, 2009, 11, 7-10.	3.3	36