Robert J Bryson-Richardson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6941933/publications.pdf

Version: 2024-02-01

172457 161849 7,452 54 29 54 citations h-index g-index papers 59 59 59 17870 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Novel preclinical model for CDKL5 deficiency disorder. DMM Disease Models and Mechanisms, 2022, 15,	2.4	5
2	Metformin rescues muscle function in BAG3 myofibrillar myopathy models. Autophagy, 2021, 17, 2494-2510.	9.1	22
3	246th ENMC International Workshop: Protein aggregate myopathies 24–26 May 2019, Hoofddorp, The Netherlands. Neuromuscular Disorders, 2021, 31, 158-166.	0.6	5
4	Functional validation of CHMP7 as an ADHD risk gene. Translational Psychiatry, 2020, 10, 385.	4.8	11
5	BAG3P215L/KO Mice as a Model of BAG3P209L Myofibrillar Myopathy. American Journal of Pathology, 2020, 190, 554-562.	3.8	1
6	KBTBD13 is an actin-binding protein that modulates muscle kinetics. Journal of Clinical Investigation, 2020, 130, 754-767.	8.2	25
7	A transgenic zebrafish model of hepatocyte function in human Z $\hat{l}\pm 1$ -antitrypsin deficiency. Biological Chemistry, 2019, 400, 1603-1616.	2.5	3
8	Linking lifeâ€history theory and metabolic theory explains the offspring sizeâ€temperature relationship. Ecology Letters, 2019, 22, 518-526.	6.4	54
9	The role of ADHD associated genes in neurodevelopment. Developmental Biology, 2018, 438, 69-83.	2.0	65
10	Does the cost of development scale allometrically with offspring size?. Functional Ecology, 2018, 32, 762-772.	3.6	16
11	Recent advances in understanding congenital myopathies. F1000Research, 2018, 7, 1921.	1.6	28
12	Advances in the Understanding of Skeletal Myopathies from Zebrafish Models., 2018,, 151-183.		1
13	Testing of therapies in a novel nebulin nemaline myopathy model demonstrate a lack of efficacy. Acta Neuropathologica Communications, 2018, 6, 40.	5.2	19
14	L-tyrosine supplementation does not ameliorate skeletal muscle dysfunction in zebrafish and mouse models of dominant skeletal muscle α-actin nemaline myopathy. Scientific Reports, 2018, 8, 11490.	3.3	18
15	Genetic compensation triggered by actin mutation prevents the muscle damage caused by loss of actin protein. PLoS Genetics, 2018, 14, e1007212.	3.5	47
16	Production of zebrafish cardiospheres and cardiac progenitor cells in vitro and threeâ€dimensional culture of adult zebrafish cardiac tissue in scaffolds. Biotechnology and Bioengineering, 2017, 114, 2142-2148.	3.3	7
17	Analysis of RNA Expression in Adult Zebrafish Skeletal Muscle. Methods in Molecular Biology, 2017, 1668, 27-35.	0.9	1
18	Genome-wide identification of conserved intronic non-coding sequences using a Bayesian segmentation approach. BMC Genomics, 2017, 18, 259.	2.8	5

#	Article	IF	Citations
19	Filamin C is a highly dynamic protein associated with fast repair of myofibrillar microdamage. Human Molecular Genetics, 2016, 25, ddw135.	2.9	58
20	Variants in the Oxidoreductase PYROXD1 Cause Early-Onset Myopathy with Internalized Nuclei and Myofibrillar Disorganization. American Journal of Human Genetics, 2016, 99, 1086-1105.	6.2	45
21	Using Touch-evoked Response and Locomotion Assays to Assess Muscle Performance and Function in Zebrafish. Journal of Visualized Experiments, 2016, , .	0.3	48
22	The Driving Mechanism for Unidirectional Blood Flow in the Tubular Embryonic Heart. Annals of Biomedical Engineering, 2016, 44, 3069-3083.	2.5	9
23	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
24	FLNC myofibrillar myopathy results from impaired autophagy and protein insufficiency. Human Molecular Genetics, 2016, 25, 2131-2142.	2.9	44
25	Zebrafish models for nemaline myopathy reveal a spectrum of nemaline bodies contributing to reduced muscle function. Acta Neuropathologica, 2015, 130, 389-406.	7.7	47
26	Bone morphogenetic protein/retinoic acid inducible neural-specific protein (brinp) expression during Danio rerio development. Gene Expression Patterns, 2015, 18, 37-43.	0.8	9
27	Comparison of different numerical treatments for x-ray phase tomography of soft tissue from differential phase projections. Physics in Medicine and Biology, 2015, 60, 3065-3080.	3.0	4
28	Immuno Correlative Light and Electron Microscopy on Tokuyasu Cryosections. Methods in Cell Biology, 2014, 124, 241-258.	1.1	20
29	Zebrafish models of BAG3 myofibrillar myopathy suggest a toxic gain of function leading to BAG3 insufficiency. Acta Neuropathologica, 2014, 128, 821-833.	7.7	67
30	The quail anatomy portal. Database: the Journal of Biological Databases and Curation, 2014, 2014, bau028-bau028.	3.0	1
31	Sample Drift Correction Following 4D Confocal Time-lapse Imaging. Journal of Visualized Experiments, 2014, , .	0.3	153
32	Mutations in KLHL40 Are a Frequent Cause of Severe Autosomal-Recessive Nemaline Myopathy. American Journal of Human Genetics, 2013, 93, 6-18.	6.2	186
33	In Vivo Wall Shear Measurements within the Developing Zebrafish Heart. PLoS ONE, 2013, 8, e75722.	2.5	37
34	Morphogenesis and Cell Fate Determination within the Adaxial Cell Equivalence Group of the Zebrafish Myotome. PLoS Genetics, 2012, 8, e1003014.	3.5	33
35	Cardiac-phase filtering in intracardiac particle image velocimetry. Journal of Biomedical Optics, 2012, 17, 1.	2.6	12
36	Characterization and investigation of zebrafish models of filamin-related myofibrillar myopathy. Human Molecular Genetics, 2012, 21, 4073-4083.	2.9	40

#	Article	IF	Citations
37	The Zebrafish Anatomy Portal: A novel integrated resource to facilitate zebrafish research. Developmental Biology, 2012, 372, 1-4.	2.0	9
38	Zebrafish prox1b Mutants Develop a Lymphatic Vasculature, and prox1b Does Not Specifically Mark Lymphatic Endothelial Cells. PLoS ONE, 2011, 6, e28934.	2.5	27
39	The zebrafish dystrophic mutant <i>softy</i> maintains muscle fibre viability despite basement membrane rupture and muscle detachment. Development (Cambridge), 2009, 136, 3367-3376.	2.5	48
40	The genetics of vertebrate myogenesis. Nature Reviews Genetics, 2008, 9, 632-646.	16.3	227
41	The eIF4G-homolog p97 can activate translation independent of caspase cleavage. Rna, 2007, 13, 374-384.	3.5	43
42	The zebrafish candyfloss mutant implicates extracellular matrix adhesion failure in laminin Â2-deficient congenital muscular dystrophy. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 7092-7097.	7.1	154
43	Whole-Somite Rotation Generates Muscle Progenitor Cell Compartments in the Developing Zebrafish Embryo. Developmental Cell, 2007, 12, 207-219.	7.0	163
44	FishNet: an online database of zebrafish anatomy. BMC Biology, 2007, 5, 34.	3.8	56
45	Analysis of protein sequence and interaction data for candidate disease gene prediction. Nucleic Acids Research, 2006, 34, e130-e130.	14.5	138
46	Myosin heavy chain expression in zebrafish and slow muscle composition. Developmental Dynamics, 2005, 233, 1018-1022.	1.8	72
47	Met and Hgf signaling controls hypaxial muscle and lateral line development in the zebrafish. Development (Cambridge), 2004, 131, 4857-4869.	2.5	7 3
48	Optical Projection Tomography for Spatio-Temporal Analysis in the Zebrafish. Methods in Cell Biology, 2004, 76, 37-50.	1.1	37
49	Developmentally Restricted Actin-Regulatory Molecules Control Morphogenetic Cell Movements in the Zebrafish Gastrula. Current Biology, 2004, 14, 1632-1638.	3.9	40
50	Large-scale analysis of gene structure in rhodopsin-like GPCRs: evidence for widespread loss of an ancient intron. Gene, 2004, 338, 15-23.	2.2	31
51	Sequence Characterization of Teleost Fish Melanocortin Receptors. Annals of the New York Academy of Sciences, 2003, 994, 319-330.	3.8	30
52	The structure and evolution of the melanocortin and MCH receptors in fish and mammals. Genomics, 2003, 81, 184-191.	2.9	139
53	Cadherin-Mediated Differential Cell Adhesion Controls Slow Muscle Cell Migration in the Developing Zebrafish Myotome. Developmental Cell, 2003, 5, 865-876.	7.0	85
54	Dystrophin is required for the formation of stable muscle attachments in the zebrafish embryo. Development (Cambridge), 2003, 130, 5851-5860.	2.5	225