
Carmen Bouza

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6941768/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genomic Hatchery Introgression in Brown Trout (Salmo trutta L.): Development of a Diagnostic SNP Panel for Monitoring the Impacted Mediterranean Rivers. Genes, 2022, 13, 255.	2.4	6
2	Genomic survey of edible cockle (<i>Cerastoderma edule</i>) in the Northeast Atlantic: A baseline for sustainable management of its wild resources. Evolutionary Applications, 2022, 15, 262-285.	3.1	13
3	Genetic diversity and structure of Taxus baccata from the Cantabrian-Atlantic area in northern Spain: A guide for conservation and management actions. Forest Ecology and Management, 2021, 482, 118844.	3.2	8
4	A multidisciplinary approach to identify priority areas for the monitoring of a vulnerable family of fishes in Spanish Marine National Parks. Bmc Ecology and Evolution, 2021, 21, 4.	1.6	8
5	Low impact of different SNP panels from two building-loci pipelines on RAD-Seq population genomic metrics: case study on five diverse aquatic species. BMC Genomics, 2021, 22, 150.	2.8	7
6	A genome-wide association study, supported by a new chromosome-level genome assembly, suggests sox2 as a main driver of the undifferentiatiated ZZ/ZW sex determination of turbot (Scophthalmus) Tj ETQq0 0	0 rg2B97 /O∿	verl ac k 10 Tf 5
7	Population Genomics in Rhamdia quelen (Heptapteridae, Siluriformes) Reveals Deep Divergence and Adaptation in the Neotropical Region. Genes, 2020, 11, 109.	2.4	4
8	Living at the edge: population differentiation in endangered Arnica montana from NW Iberian Peninsula. Plant Systematics and Evolution, 2020, 306, 1.	0.9	5
9	Genomic Signatures After Five Generations of Intensive Selective Breeding: Runs of Homozygosity and Genetic Diversity in Representative Domestic and Wild Populations of Turbot (Scophthalmus) Tj ETQq1 1 0.784	31 4.1 gBT ,	Ov e zlock 10
10	Parallel pattern of differentiation at a genomic island shared between clinal and mosaic hybrid zones in a complex of cryptic seahorse lineages. Evolution; International Journal of Organic Evolution, 2019, 73, 817-835.	2.3	28
11	Past hybridisation and introgression erased traces of mitochondrial lineages evolution in the Neotropical silver catfish Rhamdia quelen (Siluriformes: Heptapteridae). Hydrobiologia, 2019, 830, 161-177.	2.0	4
12	Identification of an endemic Mediterranean brown trout mtDNA group within a highly perturbed aquatic system, the Llobregat River (NE Spain). Hydrobiologia, 2019, 827, 277-291.	2.0	7
13	Parallel evolution and adaptation to environmental factors in a marine flatfish: Implications for fisheries and aquaculture management of the turbot (<i>Scophthalmus maximus</i>). Evolutionary Applications, 2018, 11, 1322-1341.	3.1	54
14	Stocking impact, population structure and conservation of wild brown trout populations in inner Galicia (NW Spain), an unstable hydrologic region. Aquatic Conservation: Marine and Freshwater Ecosystems, 2018, 28, 435-443.	2.0	15
15	Cytogenomic analysis of several repetitive DNA elements in turbot (Scophthalmus maximus). Gene, 2018, 644, 4-12.	2.2	1
16	Highly dense linkage maps from 31 full-sibling families of turbot (Scophthalmus maximus) provide insights into recombination patterns and chromosome rearrangements throughout a newly refined genome assembly. DNA Research, 2018, 25, 439-450.	3.4	44
17	Detection of Grivette BMP15 prolificacy variant (FecX) in different sheep breeds presented in Galicia (NW Spain). Gene Reports, 2018, 12, 109-114.	0.8	4
18	Species identification of two closely exploited flatfish, turbot (<scp><i>Scophthalmus) Tj ETQq0 0 0 rgBT /Over</i></scp>	lock 10 Tf 2.0	50 67 Td (ma: 4

approach. Aquatic Conservation: Marine and Freshwater Ecosystems, 2018, 28, 1253-1260.

CARMEN BOUZA

#	Article	IF	CITATIONS
19	Validation of growth-related quantitative trait loci markers in turbot (Scophthalmus maximus) families as a step toward marker assisted selection. Aquaculture, 2018, 495, 602-610.	3.5	21
20	Tracing the genetic impact of farmed turbot Scophthalmus maximus on wild populations. Aquaculture Environment Interactions, 2018, 10, 447-463.	1.8	29
21	First characterization and validation of turbot microRNAs. Aquaculture, 2017, 472, 76-83.	3.5	18
22	Integrating genomic resources of flatfish (Pleuronectiformes) to boost aquaculture production. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2017, 21, 41-55.	1.0	21
23	Optimization of post-deposition annealing in Cu 2 ZnSnS 4 thin film solar cells and its impact on device performance. Solar Energy Materials and Solar Cells, 2017, 170, 287-294.	6.2	48
24	Species complex delimitation and patterns of population structure at different geographic scales in Neotropical silver catfish (Rhamdia: Heptapteridae). Environmental Biology of Fishes, 2017, 100, 1047-1067.	1.0	10
25	Differential gene expression and SNP association between fast- and slow-growing turbot (Scophthalmus maximus). Scientific Reports, 2017, 7, 12105.	3.3	23
26	Integrative Transcriptome, Genome and Quantitative Trait Loci Resources Identify Single Nucleotide Polymorphisms in Candidate Genes for Growth Traits in Turbot. International Journal of Molecular Sciences, 2016, 17, 243.	4.1	45
27	Turbot (Scophthalmus maximus) genomic resources: application for boosting aquaculture production. , 2016, , 131-163.		26
28	Identification of novel gender-associated mitochondrial haplotypes inMargaritifera margaritifera(Linnaeus, 1758). Zoological Journal of the Linnean Society, 2016, , .	2.3	0
29	Whole genome sequencing of turbot (<i>Scophthalmus maximus</i> ; Pleuronectiformes): a fish adapted to demersal life. DNA Research, 2016, 23, 181-192.	3.4	150
30	First records of <i>Hippocampus algiricus</i> in the Canary Islands (northâ€east Atlantic Ocean) with an observation of hybridization with <i>Hippocampus hippocampus</i> . Journal of Fish Biology, 2015, 87, 1080-1089.	1.6	9
31	Phylogenetic diversity within the endemic brown trout Duero lineage: implications for conservation and management. Marine and Freshwater Research, 2015, 66, 1066.	1.3	9
32	First Haploid Genetic Map Based on Microsatellite Markers in Senegalese Sole (Solea senegalensis,) Tj ETQq0 C) 0 rgBT /Ov 2.4	erlqçk 10 Tf 5
33	A genome scan for candidate genes involved in the adaptation of turbot (Scophthalmus maximus). Marine Genomics, 2015, 23, 77-86.	1.1	41
34	Conservation Genetics of Threatened Hippocampus guttulatus in Vulnerable Habitats in NW Spain: Temporal and Spatial Stability of Wild Populations with Flexible Polygamous Mating System in Captivity. PLoS ONE, 2015, 10, e0117538.	2.5	18
35	Fine Mapping and Evolution of the Major Sex Determining Region in Turbot (<i>Scophthalmus) Tj ETQq1 1 0.7</i>	84314 rgBT 1.8	Oyerlock 10
36	Consolidation of the genetic and cytogenetic maps of turbot (Scophthalmus maximus) using FISH with	2.2	23

BAC clones. Chromosoma, 2014, 123, 281-291.

#	Article	IF	CITATIONS
37	ldentification of Quantitative Trait Loci Associated with Resistance to Viral Haemorrhagic Septicaemia (VHS) in Turbot (Scophthalmus maximus): A Comparison Between Bacterium, Parasite and Virus Diseases. Marine Biotechnology, 2014, 16, 265-276.	2.4	54

First genetic linkage map for comparative mapping and QTL screening of brill (Scophthalmus) Tj ETQq0 0 0 rgBT /Oyerlock 1037 f 50 702 38

39	Uncovering <scp>QTL</scp> for resistance and survival time to <i><scp>P</scp>hilasterides dicentrarchi</i> in turbot (<i><scp>S</scp>cophthalmus maximus</i>). Animal Genetics, 2013, 44, 149-157.	1.7	62
40	Compilation of mapping resources in turbot (Scophthalmus maximus): A new integrated consensus genetic map. Aquaculture, 2013, 414-415, 19-25.	3.5	37
41	Permanent Genetic Resources added to Molecular Ecology Resources Database 1 December 2012–31 January 2013. Molecular Ecology Resources, 2013, 13, 546-549.	4.8	36
42	Identification and conservation of remnant genetic resources of brown trout in relict populations from Western Mediterranean streams. Hydrobiologia, 2013, 707, 29-45.	2.0	19
43	Development and Validation of Single Nucleotide Polymorphisms (SNPs) Markers from Two Transcriptome 454-Runs of Turbot (Scophthalmus maximus) Using High-Throughput Genotyping. International Journal of Molecular Sciences, 2013, 14, 5694-5711.	4.1	33
44	Gene Expression Profiles of Spleen, Liver, and Head Kidney in Turbot (Scophthalmus maximus) Along the Infection Process with Philasterides dicentrarchi Using an Immune-Enriched Oligo-Microarray. Marine Biotechnology, 2012, 14, 570-582.	2.4	29
45	A microsatellite panel for mating system analysis and broodstock management of captive long-snouted seahorse Hippocampus guttulatus. Aquaculture, 2012, 356-357, 153-157.	3.5	5
46	An Expressed Sequence Tag (EST)-enriched genetic map of turbot (Scophthalmus maximus): a useful framework for comparative genomics across model and farmed teleosts. BMC Genetics, 2012, 13, 54.	2.7	62
47	Exploitation of a turbot (<i>Scophthalmus maximus</i> L.) immuneâ€related expressed sequence tag (EST) database for microsatellite screening and validation. Molecular Ecology Resources, 2012, 12, 706-716.	4.8	15
48	Validation of single nucleotide polymorphism (SNP) markers from an immune Expressed Sequence Tag (EST) turbot, Scophthalmus maximus, database. Aquaculture, 2011, 313, 31-41.	3.5	39
49	Phylogeography, genetic structure, and conservation of the endangered Caspian brown trout, Salmo trutta caspius (Kessler, 1877), from Iran. Hydrobiologia, 2011, 664, 51-67.	2.0	23
50	Gene Expression Profiles of the Spleen, Liver, and Head Kidney in Turbot (Scophthalmus maximus) Along the Infection Process with Aeromonas salmonicida Using an Immune-Enriched Oligo-microarray. Marine Biotechnology, 2011, 13, 1099-1114.	2.4	79
51	Detection of growth-related QTL in turbot (Scophthalmus maximus). BMC Genomics, 2011, 12, 473.	2.8	86
52	QTL detection for Aeromonas salmonicida resistance related traits in turbot (Scophthalmus) Tj ETQq0 0 0 rgBT /0	Overlock 1 2.8	0

53	Design and Performance of a Turbot (Scophthalmus maximus) Oligo-microarray Based on ESTs from Immune Tissues. Marine Biotechnology, 2010, 12, 452-465.	2.4	37
54	Management units of brown trout from Galicia (NW: Spain) based on spatial genetic structure analysis. Conservation Genetics, 2010, 11, 897-906.	1.5	10

#	Article	IF	CITATIONS
55	Species identification and genetic structure of threatened seahorses in Gran Canaria Island (Spain) using mitochondrial and microsatellite markers. Conservation Genetics, 2010, 11, 2431-2436.	1.5	13
56	Statistical properties and performance of pairwise relatedness estimators using turbot (Scophthalmus maximusL.) family data. Aquaculture Research, 2010, 41, 528-534.	1.8	7
57	Variation in anonymous and EST-microsatellites suggests adaptive population divergence in turbot. Marine Ecology - Progress Series, 2010, 420, 231-239.	1.9	45
58	Morphological variation in a secondary contact between divergent lineages of brown trout (Salmo) Tj ETQq0 0 0	rgBT /Ove 1.3	rlock 10 Tf 50 13
59	Identification of the Major Sex-Determining Region of Turbot (<i>Scophthalmus maximus</i>). Genetics, 2009, 183, 1443-1452.	2.9	109
60	High Ag-NOR-site variation associated to a secondary contact in brown trout from the Iberian Peninsula. Genetica, 2009, 136, 419-427.	1.1	8
61	Application of amplified fragment length polymorphism markers to assess molecular polymorphisms in gynogenetic haploid embryos of turbot (Scophthalmus maximus). Aquaculture Research, 2008, 39, 41-49.	1.8	7
62	Mitochondrial haplotype variability of brown trout populations from Northwestern Iberian Peninsula, a secondary contact area between lineages. Conservation Genetics, 2008, 9, 917-920.	1.5	24
63	Expressed sequence tags (ESTs) from immune tissues of turbot (Scophthalmus maximus) challenged with pathogens. BMC Veterinary Research, 2008, 4, 37.	1.9	61
64	Characterization of ESTâ€derived microsatellites for gene mapping and evolutionary genomics in turbot. Animal Genetics, 2008, 39, 666-670.	1.7	33
65	Centromere-linkage in the turbot (Scophthalmus maximus) through half-tetrad analysis in diploid meiogynogenetics. Aquaculture, 2008, 280, 81-88.	3.5	60
66	Genetic diversity analysis and management of turbot (Scophthalmus maximus) broodstocks assisted by microsatellite markers. Aquaculture, 2007, 272, S288.	3.5	0
67	Performances of relatedness coefficients using actual microsatellite family data from a turbot selection program. Aquaculture, 2007, 272, S288-S289.	3.5	0
68	A microsatellite marker tool for parentage assessment in gilthead seabream (Sparus aurata). Aquaculture, 2007, 272, S210-S216.	3.5	35
69	Accuracy of pairwise methods in the reconstruction of family relationships, using molecular information from turbot (Scophthalmus maximus). Aquaculture, 2007, 273, 434-442.	3.5	14
70	Development and characterization of 248 novel microsatellite markers in turbot (Scophthalmus) Tj ETQq0 0 0 rg	BT_/Overlo 2.0	ck 10 Tf 50 1

71	A Microsatellite Genetic Map of the Turbot (<i>Scophthalmus maximus</i>). Genetics, 2007, 177, 2457-2467.	2.9	93
72	Analysis of a secondary contact between divergent lineages of brown trout Salmo trutta L. from Duero basin using microsatellites and mtDNA RFLPs. Journal of Fish Biology, 2007, 71, 195-213.	1.6	19

#	Article	IF	CITATIONS
73	Diversity in isochore structure among cold-blooded vertebrates based on GC content of coding and non-coding sequences. Genetica, 2007, 129, 281-289.	1.1	23

Novel microsatellite loci in the threatened European long-snouted seahorse (Hippocampus) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 702 To

75	Threatened freshwater pearl mussel Margaritifera margaritifera L. in NW Spain: low and very structured genetic variation in southern peripheral populations assessed using microsatellite markers. Conservation Genetics, 2007, 8, 937-948.	1.5	32
76	A microsatellite marker tool for parentage analysis in Senegal sole (Solea senegalensis): Genotyping errors, null alleles and conformance to theoretical assumptions. Aquaculture, 2006, 261, 1194-1203.	3.5	45
77	A set of highly polymorphic microsatellites useful for kinship and population analysis in turbot (Scophthalmus maximus L.). Aquaculture Research, 2006, 37, 1578-1582.	1.8	22
78	New microsatellite markers in turbot (Scophthalmus maximus) derived from an enriched genomic library and sequence databases. Molecular Ecology Notes, 2005, 5, 62-64.	1.7	15
79	Potential sources of error in parentage assessment of turbot (Scophthalmus maximus) using microsatellite loci. Aquaculture, 2004, 242, 119-135.	3.5	63
80	Gynogenesis Assessment Using Microsatellite Genetic Markers in Turbot (Scophthalmus maximus). Marine Biotechnology, 2003, 5, 584-592.	2.4	31
81	Induction of triploidy in the turbot (Scophthalmus maximus) II. Effects of cold shock timing and induction of triploidy in a large volume of eggs. Aquaculture, 2003, 220, 821-831.	3.5	52
82	Allozyme and microsatellite diversity in natural and domestic populations of turbot (Scophthalmus) Tj ETQq0 0 C Sciences, 2002, 59, 1460-1473.) rgBT /Ove 1.4	erlock 10 T 60
83	>Localization of ribosomal genes in Pleuronectiformes using Ag-, CMA3-banding and in situ hybridization. Heredity, 2001, 86, 531-536.	2.6	36
84	Allozymic evidence of parapatric differentiation of brown trout (Salmo trutta L.) within an Atlantic river basin of the Iberian Peninsula. Molecular Ecology, 2001, 10, 1455-1469.	3.9	29
85	Genetic monitoring of supportive breeding in brown trout (<i>Salmo trutta</i> L.), using microsatellite DNA markers. Canadian Journal of Fisheries and Aquatic Sciences, 2000, 57, 2130-2139.	1.4	65
86	Genetic structure of brown trout, Salmo trutta L., at the southern limit of the distribution range of the anadromous form. Molecular Ecology, 1999, 8, 1991-2001.	3.9	70
87	Gene diversity analysis in natural populations and cultured stocks of turbot (Scophthalmus maximus) Tj ETQq1 🕻	1 0,784314 1.7	4 rgBT /Ov
88	Differential digestion of the centromeric heterochromatic regions of the 5-azacytidine-decondensed human chromosomes 1, 9, 15, and 16 by Ndell and Sau3Al restriction endonucleases. Genetica, 1995, 96, 235-238.	1.1	0
89	Karotypic characterization of turbot (Scophthalmus maximus) with conventional, fluorochrome and restriction endonuclease-banding techniques. Marine Biology, 1994, 120, 609-613.	1.5	59
90	Quantitative analysis of the variability of nucleolar organizer regions in Salmo trutta. Genome, 1993, 36, 1119-1123.	2.0	32

#	Article	IF	CITATIONS
91	Cytogenetical characterization of hatchery stocks and natural populations of Sea and Brown Trout from northwestern Spain. Heredity, 1991, 66, 9-17.	2.6	57
92	Chromosomal heterochromatin differentiation in Salmo trutta with restriction enzymes. Heredity, 1991, 66, 241-249.	2.6	21
93	Analysis of the structure and variability of nucleolar organizer regions of <i>Salmo trutta</i> by C-, Ag-, and restriction endonuclease banding. Cytogenetic and Genome Research, 1990, 54, 6-9.	1.1	52