
Olivier Dangles

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6941591/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Glacier influence on bird assemblages in habitat islands of the high Bolivian Andes. Diversity and Distributions, 2022, 28, 242-256.	4.1	4
2	Pesticide misuse among small Andean farmers stems from pervasive misinformation by retailers. , 2022, 1, e0000017.		8
3	Encapsulation of phenolic acids into cyclodextrins: A global statistical analysis of the effects of pH, temperature and concentrations on binding constants measured by ACE methods. Electrophoresis, 2022, 43, 2290-2301.	2.4	6
4	The influence of phenolic acyl groups on the color of purple sweet potato anthocyanins and their metal complexes. Dyes and Pigments, 2021, 185, 108792.	3.7	17
5	Acylated Anthocyanins from Red Cabbage and Purple Sweet Potato Can Bind Metal Ions and Produce Stable Blue Colors. International Journal of Molecular Sciences, 2021, 22, 4551.	4.1	10
6	Discovery of a natural cyan blue: A unique food-sourced anthocyanin could replace synthetic brilliant blue. Science Advances, 2021, 7, .	10.3	34
7	One-Step Extraction of Olive Phenols from Aqueous Solution Using Î ² -Cyclodextrin in the Solid State, a Simple Eco-Friendly Method Providing Photochemical Stability to the Extracts. Molecules, 2021, 26, 4463.	3.8	2
8	Functional Feeding Groups of Macrofauna and Detritus Decomposition along a Gradient of Glacial Meltwater Influence in Tropical High-Andean Streams. Water (Switzerland), 2021, 13, 3303.	2.7	3
9	Iron-induced peroxidation of trilinolein nano-emulsions under model gastric conditions and its inhibition by dietary phenolic antioxidants. Food and Function, 2020, 11, 9144-9156.	4.6	3
10	Polyphenols bind to low density lipoprotein at biologically relevant concentrations that are protective for heart disease. Archives of Biochemistry and Biophysics, 2020, 694, 108589.	3.0	20
11	Le potentiel antioxydant des alimentsÂ: mythes et réalités. Cahiers De Nutrition Et De Dietetique, 2020, 55, 176-183.	0.3	2
12	The fate of acylated anthocyanins in mildly heated neutral solution. Dyes and Pigments, 2020, 178, 108326.	3.7	27
13	Functional structure and diversity of invertebrate communities in a glacierised catchment of the tropical Andes. Freshwater Biology, 2020, 65, 1348-1362.	2.4	11
14	Binding of Plant Polyphenols to Serum Albumin and LDL: Healthy Implications for Heart Disease. Journal of Agricultural and Food Chemistry, 2019, 67, 9139-9147.	5.2	31
15	The influence of acylation, metal binding and natural antioxidants on the thermal stability of red cabbage anthocyanins in neutral solution. Food and Function, 2019, 10, 6740-6751.	4.6	51
16	A global synthesis of biodiversity responses to glacier retreat. Nature Ecology and Evolution, 2019, 3, 1675-1685.	7.8	154
17	Characterization of hydroxytyrosol-β-cyclodextrin complexes in solution and in the solid state, a potential bioactive ingredient. LWT - Food Science and Technology, 2019, 102, 317-323.	5.2	17
18	Effect of Foods and β-Cyclodextrin on the Bioaccessibility and the Uptake by Caco-2 Cells of Hydroxytyrosol from Either a Pure Standard or Alperujo. Journal of Agricultural and Food Chemistry, 2018, 66, 4614-4620.	5.2	13

#	Article	IF	CITATIONS
19	Time lag between glacial retreat and upward migration alters tropical alpine communities. Perspectives in Plant Ecology, Evolution and Systematics, 2018, 30, 89-102.	2.7	62
20	Direct and Rapid Profiling of Biophenols in Olive Pomace by UHPLC-DAD-MS. Food Analytical Methods, 2018, 11, 1001-1010.	2.6	31
21	Involvement of bilitranslocase and beta-glucuronidase in the vascular protection by hydroxytyrosol and its glucuronide metabolites in oxidative stress conditions. Journal of Nutritional Biochemistry, 2018, 51, 8-15.	4.2	20
22	β-Cyclodextrin Does not Alter the Bioaccessibility and the Uptake by Caco-2 Cells of Olive By-Product Phenolic Compounds. Nutrients, 2018, 10, 1653.	4.1	12
23	Carotenoids: Experimental Ionization Energies and Capacity at Inhibiting Lipid Peroxidation in a Chemical Model of Dietary Oxidative Stress. Journal of Physical Chemistry B, 2018, 122, 5860-5869.	2.6	13
24	Red cabbage anthocyanins: The influence of d-glucose acylation by hydroxycinnamic acids on their structural transformations in acidic to mildly alkaline conditions and on the resulting color. Dyes and Pigments, 2018, 158, 342-352.	3.7	44
25	The Chemical Reactivity of Anthocyanins and Its Consequences in Food Science and Nutrition. Molecules, 2018, 23, 1970.	3.8	186
26	Binding of the five multistate species of the anthocyanin analog 7-Î2-D-glucopyranosyloxy-4â€2-hydroxyflavylium to the Î2-cyclodextrin derivative captisol. Dyes and Pigments, 2017, 143, 479-487.	3.7	8
27	Analogs of Natural 3-Deoxyanthocyanins: O-Glucosides of the 4′,7-Dihydroxyflavylium Ion and the Deep Influence of Glycosidation on Color. International Journal of Molecular Sciences, 2016, 17, 1751.	4.1	6
28	p-Hydroxyphenyl-pyranoanthocyanins: An Experimental and Theoretical Investigation of Their Acid—Base Properties and Molecular Interactions. International Journal of Molecular Sciences, 2016, 17, 1842.	4.1	26
29	Direct and indirect effects of glaciers on aquatic biodiversity in high Andean peatlands. Global Change Biology, 2016, 22, 3196-3205.	9.5	20
30	Human hydroxytyrosol's absorption and excretion from a nutraceutical. Journal of Functional Foods, 2016, 23, 278-282.	3.4	32
31	The inclusion complex of rosmarinic acid into beta-cyclodextrin: A thermodynamic and structural analysis by NMR and capillary electrophoresis. Food Chemistry, 2016, 208, 258-263.	8.2	40
32	Effect of Temperature on Acidity and Hydration Equilibrium Constants of Delphinidin-3- <i>O</i> - and Cyanidin-3- <i>O</i> - sambubioside Calculated from Uni- and Multiwavelength Spectroscopic Data. Journal of Agricultural and Food Chemistry, 2016, 64, 4139-4145.	5.2	12
33	Ecological responses to experimental glacier-runoff reduction in alpine rivers. Nature Communications, 2016, 7, 12025.	12.8	56
34	Antioxidant activity of olive phenols and other dietary phenols in model gastric conditions: Scavenging of the free radical DPPH and inhibition of the haem-induced peroxidation of linoleic acid. Food Chemistry, 2016, 213, 135-142.	8.2	42
35	A simple synthesis of 3-deoxyanthocyanidins and their O-glucosides. Tetrahedron, 2016, 72, 4294-4302.	1.9	26
36	A comprehensive investigation of guaiacyl-pyranoanthocyanin synthesis by one-/two-dimensional NMR and UPLC–DAD–ESI–MSn. Food Chemistry, 2016, 199, 902-910.	8.2	20

#	Article	IF	CITATIONS
37	Stabilizing and Modulating Color by Copigmentation: Insights from Theory and Experiment. Chemical Reviews, 2016, 116, 4937-4982.	47.7	408
38	A comparative analysis reveals weak relationships between ecological factors and beta diversity of stream insect metacommunities at two spatial levels. Ecology and Evolution, 2015, 5, 1235-1248.	1.9	167
39	Interactions between Carotenoids from Marine Bacteria and Other Micronutrients: Impact on Stability and Antioxidant Activity. Marine Drugs, 2015, 13, 7020-7039.	4.6	21
40	3-O-Hydroxytyrosol glucuronide and 4-O-hydroxytyrosol glucuronide reduce endoplasmic reticulum stress in vitro. Food and Function, 2015, 6, 3275-3281.	4.6	29
41	Stability of bacterial carotenoids in the presence of iron in a model of the gastric compartment – Comparison with dietary reference carotenoids. Archives of Biochemistry and Biophysics, 2015, 572, 89-100.	3.0	19
42	Invertebrate Metacommunity Structure and Dynamics in an Andean Glacial Stream Network Facing Climate Change. PLoS ONE, 2015, 10, e0136793.	2.5	66
43	Chemically Synthesized Glycosides of Hydroxylated Flavylium Ions as Suitable Models of Anthocyanins: Binding to Iron Ions and Human Serum Albumin, Antioxidant Activity in Model Gastric Conditions. Molecules, 2014, 19, 20709-20730.	3.8	15
44	Temporal variability in discharge and benthic macroinvertebrate assemblages in a tropical glacier-fed stream. Freshwater Science, 2014, 33, 32-45.	1.8	25
45	Relationships between stream macroinvertebrate communities and new floodâ€based indices of glacial influence. Freshwater Biology, 2014, 59, 1916-1925.	2.4	27
46	Runoff and the longitudinal distribution of macroinvertebrates in a glacierâ€ f ed stream: implications for the effects of global warming. Freshwater Biology, 2014, 59, 2038-2050.	2.4	48
47	Obstacles to integrated pest management adoption in developing countries. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3889-3894.	7.1	199
48	Antioxidant properties of 3-deoxyanthocyanidins and polyphenolic extracts from Côte d'lvoire's red and white sorghums assessed by ORAC and in vitro LDL oxidisability tests. Food Chemistry, 2014, 145, 701-709.	8.2	50
49	A comprehensive review on flavanones, the major citrus polyphenols. Journal of Food Composition and Analysis, 2014, 33, 85-104.	3.9	304
50	Reactivity of food phenols with iron and copper ions: binding, dioxygen activation and oxidation mechanisms. Food and Function, 2014, 5, 1186-1202.	4.6	74
51	Oxidative Cleavage Products of Lycopene: Production and Reactivity in a Biomimetic Experimental Model of Oxidative Stress. ACS Symposium Series, 2013, , 191-205.	0.5	4
52	Iron-induced oxidation of (all-E)-β-carotene under model gastric conditions: kinetics, products, and mechanism. Free Radical Biology and Medicine, 2013, 63, 195-206.	2.9	26
53	An innovative grape juice enriched in polyphenols by microwave-assisted extraction. Food Chemistry, 2013, 141, 3268-3272.	8.2	57
54	Glycosyl carotenoids from marine spore-forming Bacillus sp. strains are readily bioaccessible and bioavailable. Food Research International, 2013, 51, 914-923.	6.2	13

#	Article	IF	CITATIONS
55	Analogs of anthocyanins with a 3′,4′-dihydroxy substitution: Synthesis and investigation of their acid–base, hydration, metal binding and hydrogen-donating properties in aqueous solution. Dyes and Pigments, 2013, 96, 7-15.	3.7	24
56	A flash photolysis and stopped-flow spectroscopy study of 3′,4′-dihydroxy-7-O-l²-d-glucopyranosyloxyflavylium chloride, an anthocyanin analogue exhibiting efficient photochromic properties. Photochemical and Photobiological Sciences, 2013, 12, 576-581.	2.9	5
57	Glacial flood pulse effects on benthic fauna in equatorial high-Andean streams. Hydrological Processes, 2013, 28, n/a-n/a.	2.6	14
58	Inhibition of iron-induced lipid peroxidation by newly identified bacterial carotenoids in model gastric conditions: comparison with common carotenoids. Food and Function, 2013, 4, 698.	4.6	26
59	Antioxidant Activity of Plant Phenols: Chemical Mechanisms and Biological Significance. Current Organic Chemistry, 2012, 16, 692-714.	1.6	93
60	Antioxidant activity of (all-E)-lycopene and synthetic apo-lycopenoids in a chemical model of oxidative stress in the gastro-intestinal tract. New Journal of Chemistry, 2012, 36, 575-587.	2.8	29
61	Dietary Iron-Initiated Lipid Oxidation and Its Inhibition by Polyphenols in Gastric Conditions. Journal of Agricultural and Food Chemistry, 2012, 60, 9074-9081.	5.2	57
62	Perturbation of the EphA2–EphrinA1 System in Human Prostate Cancer Cells by Colonic (Poly)phenol Catabolites. Journal of Agricultural and Food Chemistry, 2012, 60, 8877-8884.	5.2	25
63	Influence of a Flavan-3-ol Substituent on the Affinity of Anthocyanins (Pigments) toward Vinylcatechin Dimers and Proanthocyanidins (Copigments). Journal of Physical Chemistry B, 2012, 116, 14089-14099.	2.6	31
64	Highlights on Anthocyanin Pigmentation and Copigmentation: A Matter of Flavonoid π-Stacking Complexation To Be Described by DFT-D. Journal of Chemical Theory and Computation, 2012, 8, 2034-2043.	5.3	71
65	Biodiversity under threat in glacier-fed riverÂsystems. Nature Climate Change, 2012, 2, 361-364.	18.8	265
66	Effects of physicochemical properties of carotenoids on their bioaccessibility, intestinal cell uptake, and blood and tissue concentrations. Molecular Nutrition and Food Research, 2012, 56, 1385-1397.	3.3	124
67	Direct enrichment of olive oil in oleuropein by ultrasound-assisted maceration at laboratory and pilot plant scale. Ultrasonics Sonochemistry, 2012, 19, 777-786.	8.2	129
68	Environmental harshness and global richness patterns in glacierâ€fed streams. Global Ecology and Biogeography, 2012, 21, 647-656.	5.8	72
69	Binding of citrus flavanones and their glucuronides and chalcones to human serum albumin. Food and Function, 2011, 2, 617.	4.6	42
70	Organic Synthesis of New Putative Lycopene Metabolites and Preliminary Investigation of Their Cell-Signaling Effects. Journal of Agricultural and Food Chemistry, 2011, 59, 1457-1463.	5.2	35
71	Comparative Study on Antioxidant Activity of Lycopene (<i>Z</i>)-Isomers in Different Assays. Journal of Agricultural and Food Chemistry, 2011, 59, 4504-4511.	5.2	96
72	Predicting richness effects on ecosystem function in natural communities: insights from high-elevation streams. Ecology, 2011, 92, 733-743.	3.2	47

#	Article	IF	CITATIONS
73	A remarkable influence of microwave extraction: Enhancement of antioxidant activity of extracted onion varieties. Food Chemistry, 2011, 127, 1472-1480.	8.2	98
74	Coupled Information Diffusion–Pest Dynamics Models Predict Delayed Benefits of Farmer Cooperation in Pest Management Programs. PLoS Computational Biology, 2011, 7, e1002222.	3.2	40
75	Influence of serum albumin and the flavonol quercetin on the peroxidase activity of metmyoglobin. Free Radical Biology and Medicine, 2010, 48, 1162-1172.	2.9	19
76	Physicochemical Studies of New Anthocyanoâ€Ellagitannin Hybrid Pigments: About the Origin of the Influence of Oak <i>C</i> â€Glycosidic Ellagitannins on Wine Color. European Journal of Organic Chemistry, 2010, 2010, 55-63.	2.4	71
77	Ultrasound-assisted extraction of polyphenols (flavanone glycosides) from orange (Citrus sinensis) Tj ETQq1 1 0	.784314 r 8.2	gBŢ /Qverlock
78	Longitudinal zonation of macroinvertebrates in an Ecuadorian glacierâ€fed stream: do tropical glacial systems fit the temperate model?. Freshwater Biology, 2010, 55, 1234-1248.	2.4	50
79	Chemical Modeling of Heme-Induced Lipid Oxidation in Gastric Conditions and Inhibition by Dietary Polyphenols. Journal of Agricultural and Food Chemistry, 2010, 58, 676-683.	5.2	54
80	Vinylcatechin Dimers Are Much Better Copigments for Anthocyanins than Catechin Dimer Procyanidin B3. Journal of Agricultural and Food Chemistry, 2010, 58, 3159-3166.	5.2	23
81	Physico-Chemical and Chromatic Characterization of Malvidin 3-Glucoside-vinylcatechol and Malvidin 3-Glucoside-vinylguaiacol Wine Pigments. Journal of Agricultural and Food Chemistry, 2010, 58, 9744-9752.	5.2	27
82	Chemical Synthesis of Citrus Flavanone Glucuronides. Journal of Agricultural and Food Chemistry, 2010, 58, 8437-8443.	5.2	34
83	Microwaveâ€assisted water extraction of green tea polyphenols. Phytochemical Analysis, 2009, 20, 408-415.	2.4	106
84	Crop damage increases with pest species diversity: evidence from potato tuber moths in the tropical Andes. Journal of Applied Ecology, 2009, 46, 1115-1121.	4.0	33
85	Antioxidant Activity of Wine Pigments Derived from Anthocyanins: Hydrogen Transfer Reactions to the DPPH Radical and Inhibition of the Heme-Induced Peroxidation of Linoleic Acid. Journal of Agricultural and Food Chemistry, 2009, 57, 5762-5770.	5.2	42
86	Olive phenols efficiently inhibit the oxidation of serum albumin-bound linoleic acid and butyrylcholine esterase. Biochimica Et Biophysica Acta - General Subjects, 2009, 1790, 240-248.	2.4	26
87	<i>C</i> â€ <scp>D</scp> â€Clucopyranosyl Derivatives of Tocopherols – Synthesis and Evaluation as Amphiphilic Antioxidants. European Journal of Organic Chemistry, 2008, 2008, 1869-1883.	2.4	13
88	Synthesis of hydroxycinnamic acid glucuronides and investigation of their affinity for human serum albumin. Organic and Biomolecular Chemistry, 2008, 6, 4253.	2.8	14
89	Chemical Synthesis of Hydroxycinnamic Acid Glucosides and Evaluation of Their Ability To Stabilize Natural Colors via Anthocyanin Copigmentation. Journal of Agricultural and Food Chemistry, 2007, 55, 7573-7579.	5.2	52
90	Inhibition of the peroxidation of linoleic acid by the flavonoid quercetin within their complex with human serum albumin. Free Radical Biology and Medicine, 2007, 43, 241-252.	2.9	35

#	Article	IF	CITATIONS
91	Dietary antioxidants as inhibitors of the heme-induced peroxidation of linoleic acid: Mechanism of action and synergism. Free Radical Biology and Medicine, 2007, 43, 933-946.	2.9	49
92	UVâ~Visible Spectroscopic Investigation of the 8,8-Methylmethine Catechin-malvidin 3-Glucoside Pigments in Aqueous Solution:Â Structural Transformations and Molecular Complexation with Chlorogenic Acid. Journal of Agricultural and Food Chemistry, 2006, 54, 189-196.	5.2	42
93	Comparison of the Anthocyanin Composition during Ripening of Syrah Grapes Grown Using Organic or Conventional Agricultural Practices. Journal of Agricultural and Food Chemistry, 2006, 54, 5230-5235.	5.2	62
94	Interactions of quercetin with iron and copper ions: Complexation and autoxidation. Free Radical Research, 2006, 40, 303-320.	3.3	139
95	Flavonoid— Protein Interactions. , 2005, , 443-469.		5
96	Inhibition of the metmyoglobin-induced peroxidation of linoleic acid by dietary antioxidants: Action in the aqueous vs. lipid phase. Free Radical Research, 2005, 39, 547-563.	3.3	54
97	Flavonoid–serum albumin complexation: determination of binding constants and binding sites by fluorescence spectroscopy. Biochimica Et Biophysica Acta - General Subjects, 2005, 1721, 164-173.	2.4	474
98	Antioxidant activity of olive phenols: mechanistic investigation and characterization of oxidation products by mass spectrometry. Organic and Biomolecular Chemistry, 2005, 3, 423.	2.8	123
99	Species richness-decomposition relationships depend on species dominance. Ecology Letters, 2004, 7, 395-402.	6.4	197
100	Impacts of stream acidification on litter breakdown: implications for assessing ecosystem functioning. Journal of Applied Ecology, 2004, 41, 365-378.	4.0	222
101	Naturally acid freshwater ecosystems are diverse and functional: evidence from boreal streams. Oikos, 2004, 104, 149-155.	2.7	91
102	The Role of Biodiversity in the Functioning of Freshwater and Marine Benthic Ecosystems. BioScience, 2004, 54, 767.	4.9	296
103	Quantitative Kinetic Analysis of Hydrogen Transfer Reactions from Dietary Polyphenols to the DPPH Radical. Journal of Agricultural and Food Chemistry, 2003, 51, 615-622.	5.2	311
104	Gallic Esters of Sucrose as Efficient Radical Scavengers in Lipid Peroxidation. Journal of Agricultural and Food Chemistry, 2002, 50, 3425-3430.	5.2	18
105	Simulating species loss following perturbation: assessing the effects on process rates. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 1047-1052.	2.6	117
106	Influence of Procyanidins on the Color Stability of Oenin Solutions. Journal of Agricultural and Food Chemistry, 2002, 50, 3299-3305.	5.2	60
107	Functional plasticity of benthic macroinvertebrates: implications for trophic dynamics in acid streams. Canadian Journal of Fisheries and Aquatic Sciences, 2002, 59, 1563-1573.	1.4	73
108	Color Stability of Commercial Anthocyanin-Based Extracts in Relation to the Phenolic Composition. Protective Effects by Intra- and Intermolecular Copigmentation. Journal of Agricultural and Food Chemistry, 2001, 49, 170-176.	5.2	275

#	Article	IF	CITATIONS
109	Synthesis of a New, Highly Fluorescent Amino Acid Derivative:N-[(tert-Butoxy)carbonyl]-3-[2-(1H-indol-3-yl)benzoxazol-5-yl]-L-alanine Methyl Ester. Helvetica Chimica Acta, 2001, 84, 1086-1092.	1.6	24
110	Quercetin (=2-(3,4-Dihydroxyphenyl)-3,5,7-trihydroxy-4H-1- benzopyran-4-one) Glycosides and Sulfates: Chemical Synthesis, Complexation, and Antioxidant Properties. Helvetica Chimica Acta, 2001, 84, 1133-1156.	1.6	69
111	Binding of flavonoids to plasma proteins. Methods in Enzymology, 2001, 335, 319-333.	1.0	98
112	Title is missing!. Helvetica Chimica Acta, 2001, 84, 1133-1156.	1.6	1
113	Water-Soluble Flavonol (=3-Hydroxy-2-phenyl-4H-1-benzopyran-4-one) Derivatives: Chemical Synthesis, Colouring, and Antioxidant Properties. Helvetica Chimica Acta, 2000, 83, 428-443.	1.6	27
114	Separation of flavone C-glycosides and qualitative analysis of Passiflora incarnata L. by capillary zone electrophoresis. , 2000, 11, 90-98.		16
115	Inhibition of lipid peroxidation by quercetin and quercetin derivatives: antioxidant and prooxidant effects. Perkin Transactions II RSC, 2000, , 1215-1222.	1.1	37
116	Antioxidant properties of anthocyanins and tannins: a mechanistic investigation with catechin and the 3′,4′,7-trihydroxyflavylium ion. Perkin Transactions II RSC, 2000, , 1653-1663.	1.1	56
117	Title is missing!. Helvetica Chimica Acta, 2000, 83, 428-443.	1.6	2
118	Gallic esters of sucrose as a new class of antioxidants. Tetrahedron Letters, 1999, 40, 3387-3390.	1.4	11
119	One-electron oxidation of quercetin and quercetin derivatives in protic and non protic media. Journal of the Chemical Society Perkin Transactions II, 1999, , 1387-1396.	0.9	122
120	Acylated Flavone Glucosides: Synthesis, Conformational Investigation, and Complexation Properties. Helvetica Chimica Acta, 1999, 82, 2201-2212.	1.6	40
121	Flavonol–serum albumin complexation. Two-electron oxidation of flavonols and their complexes with serum albumin. Journal of the Chemical Society Perkin Transactions II, 1999, , 737-744.	0.9	75
122	A simple synthesis of a highly water soluble symmetrical β-cyclodextrin derivative. Tetrahedron Letters, 1997, 38, 1551-1554.	1.4	22
123	3?-(?-D-Clycopyranosyloxy)flavylium Ions: Synthesis and investigation of their properties in aqueous solution. Hydrogen bonding as a mean of colour variation. Helvetica Chimica Acta, 1997, 80, 398-413.	1.6	12
124	New aspects of anthocyanin complexation. Intramolecular copigmentation as a means for colour loss?. Phytochemistry, 1996, 41, 301-308.	2.9	127
125	Coupling reactions between flavylium ions and catechin. Phytochemistry, 1996, 41, 1583-1592.	2.9	120
126	Synthesis of 3-Methoxy- and 3-(?-D-Glucopyranosyloxy)flavylium Ions. Influence of the flavylium substitution pattern on the reactivity of anthocyanins in aqueous solution. Helvetica Chimica Acta, 1994, 77, 1595-1610.	1.6	61

#	Article	IF	CITATIONS
127	Anthocyanin molecular interactions: the first step in the formation of new pigments during wine aging?. Food Chemistry, 1994, 51, 365-371.	8.2	152
128	Kinetic and thermodynamic investigation of the aluminium–anthocyanin complexation in aqueous solution. Journal of the Chemical Society Perkin Transactions II, 1994, , 2587-2596.	0.9	56
129	Anthocyanin intramolecular copigment effect. Phytochemistry, 1993, 34, 119-124.	2.9	176
130	Kinetic and thermodynamic control of flavylium hydration in the pelargonidin-cinnamic acid complexation. Origin of the extraordinary flower color diversity of Pharbitis nil. Journal of the American Chemical Society, 1993, 115, 3125-3132.	13.7	102
131	Flavonoids and flower colour. , 1993, , 565-588.		54
132	A spectroscopic method based on the anthocyanin copigmentation interaction and applied to the quantitative study of molecular complexes. Journal of the Chemical Society Perkin Transactions II, 1992, , 247.	0.9	44
133	Polyphenol interactions. The copigmentation case: thermodynamic data from temperature variation and relaxation kinetics. Medium effect. Canadian Journal of Chemistry, 1992, 70, 2174-2189.	1.1	96
134	Anthocyanin anti-copigment effect. Phytochemistry, 1992, 31, 3811-3812.	2.9	28
135	Two very distinct types of anthocyanin complexation: Copigmentation and inclusion. Tetrahedron Letters, 1992, 33, 5227-5230.	1.4	29
136	Complexation of a fluorescent anthocyanin with purines and polyphenols. Phytochemistry, 1992, 31, 4317-4324.	2.9	24
137	pH and solvent effects on the copigmentation reaction of malvin with polyphenols, purine and pyrimidine derivatives. Journal of the Chemical Society Perkin Transactions II, 1991, , 1235.	0.9	80