Farimah Poursafaei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/694149/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Passive Primary/Backup-Based Scheduling for Simultaneous Power and Reliability Management on Heterogeneous Embedded Systems. IEEE Transactions on Sustainable Computing, 2023, 8, 82-93.	3.1	3
2	PROWL: A Cache Replacement <u>P</u> olicy fo <u>r</u> C <u>o</u> nsistency A <u>w</u> are Renewab <u>l</u> e Powered Devices. IEEE Transactions on Emerging Topics in Computing, 2022, 10, 476-487.	4.6	3
3	ReMap: Reliability Management of Peak-Power-Aware Real-Time Embedded Systems Through Task Replication. IEEE Transactions on Emerging Topics in Computing, 2022, 10, 312-323.	4.6	6
4	ARMOR: A Reliable and Mobility-Aware RPL for Mobile Internet of Things Infrastructures. IEEE Internet of Things Journal, 2022, 9, 1503-1516.	8.7	12
5	MASTER: Reclamation of Hybrid Scratchpad Memory to Maximize Energy Saving in Multi-Core Edge Systems. IEEE Transactions on Sustainable Computing, 2022, 7, 749-760.	3.1	3
6	Toward the Design of Fault-Tolerance-Aware and Peak-Power-Aware Multicore Mixed-Criticality Systems. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2022, 41, 1509-1522.	2.7	9
7	Thermal-Aware Standby-Sparing Technique on Heterogeneous Real-Time Embedded Systems. IEEE Transactions on Emerging Topics in Computing, 2022, 10, 1883-1897.	4.6	11
8	BOT-MICS: Bounding Time Using Analytics in Mixed-Criticality Systems. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2022, 41, 3239-3251.	2.7	7
9	A Survey of Fault-Tolerance Techniques for Embedded Systems From the Perspective of Power, Energy, and Thermal Issues. IEEE Access, 2022, 10, 12229-12251.	4.2	24
10	Introduction and Evaluation of Attachability for Mobile IoT Routing Protocols With Markov Chain Analysis. IEEE Transactions on Network and Service Management, 2022, 19, 3220-3238.	4.9	3
11	Power-Aware Checkpointing for Multicore Embedded Systems. IEEE Transactions on Parallel and Distributed Systems, 2022, , 1-15.	5.6	3
12	Power-Aware Runtime Scheduler for Mixed-Criticality Systems on Multicore Platform. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2021, 40, 2009-2023.	2.7	20
13	Fast and Predictable Non-Volatile Data Memory for Real-Time Embedded Systems. IEEE Transactions on Computers, 2021, 70, 359-371.	3.4	8
14	High-Performance Predictable NVM-Based Instruction Memory for Real-Time Embedded Systems. IEEE Transactions on Emerging Topics in Computing, 2021, 9, 441-455.	4.6	3
15	READY: Reliability- and Deadline-Aware Power-Budgeting for Heterogeneous Multicore Systems. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2021, 40, 646-654.	2.7	11
16	Ring-DVFS: Reliability-Aware Reinforcement Learning-Based DVFS for Real-Time Embedded Systems. IEEE Embedded Systems Letters, 2021, 13, 146-149.	1.9	10
17	COACH: <u>Co</u> nsistency <u>A</u> ware <u>Ch</u> eck-Pointing for Nonvolatile Processor in Energy Harvesting Systems. IEEE Transactions on Emerging Topics in Computing, 2021, 9, 2076-2088.	4.6	10
18	PVMC: Task Mapping and Scheduling under Process Variation Heterogeneity in Mixed-Criticality Systems. IEEE Transactions on Emerging Topics in Computing, 2021, , 1-1.	4.6	4

FARIMAH POURSAFAEI

#	Article	IF	CITATIONS
19	A Case for PIM Support in General-Purpose Compilers. IEEE Design and Test, 2021, , 1-1.	1.2	Ο
20	Simultaneous Management of Peak-Power and Reliability in Heterogeneous Multicore Embedded Systems. IEEE Transactions on Parallel and Distributed Systems, 2020, 31, 623-633.	5.6	17
21	A Comparative Study of Joint Power and Reliability Management Techniques in Multicore Embedded Systems. , 2020, , .		3
22	Peak-Power-Aware Primary-Backup Technique for Efficient Fault-Tolerance in Multicore Embedded Systems. IEEE Access, 2020, 8, 142843-142857.	4.2	14
23	Peak Power Management to Meet Thermal Design Power in Fault-Tolerant Embedded Systems. IEEE Transactions on Parallel and Distributed Systems, 2019, 30, 161-173.	5.6	37
24	Online Peak Power and Maximum Temperature Management in Multi-core Mixed-Criticality Embedded Systems. , 2019, , .		10
25	Reliability-Aware Energy Management in Mixed-Criticality Systems. IEEE Transactions on Sustainable Computing, 2018, 3, 195-208.	3.1	31
26	AdAM: Adaptive approximation management for the non-volatile memory hierarchies. , 2018, , .		14
27	An Instruction-Level Quality-Aware Method for Exploiting STT-RAM Read Approximation Techniques. IEEE Embedded Systems Letters, 2018, 10, 41-44.	1.9	1
28	Run-Time Adaptive Power-Aware Reliability Management for Manycores. IEEE Design and Test, 2018, 35, 36-44.	1.2	8
29	Fast write operations in non-volatile memories using latency masking. , 2018, , .		4
30	Objective function: A key contributor in Internet of Things primitive properties. , 2018, , .		12
31	NPAM: NVM-Aware Page Allocation for Multi-Core Embedded Systems. IEEE Transactions on Computers, 2017, 66, 1703-1716.	3.4	8
32	Reliability side-effects in Internet of Things application layer protocols. , 2017, , .		61
33	Two-State Checkpointing for Energy-Efficient Fault Tolerance in Hard Real-Time Systems. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2016, 24, 2426-2437.	3.1	49
34	Two-Phase Low-Energy N-Modular Redundancy for Hard Real-Time Multi-Core Systems. IEEE Transactions on Parallel and Distributed Systems, 2016, 27, 1497-1510.	5.6	38
35	dsReliM: Power-constrained reliability management in Dark-Silicon many-core chips under process variations. , 2015, , .		16
36	A Hardware Platform for Evaluating Low-Energy Multiprocessor Embedded Systems Based on COTS Devices. IEEE Transactions on Industrial Electronics, 2015, 62, 1262-1269.	7.9	32

#	Article	IF	CITATIONS
37	An Accurate Instruction-Level Energy Estimation Model and Tool for Embedded Systems. IEEE Transactions on Instrumentation and Measurement, 2013, 62, 1927-1934.	4.7	60
38	Error control schemes in solar energy harvesting wireless sensor networks. , 2012, , .		3
39	SCFIT: A FPGA-based fault injection technique for SEU fault model. , 2012, , .		28
40	Low-Energy Standby-Sparing for Hard Real-Time Systems. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2012, 31, 329-342.	2.7	69
41	Feedback-Based Energy Management in a Standby-Sparing Scheme for Hard Real-Time Systems. , 2011, , .		19
42	A Comparative Study of System-Level Energy Management Methods for Fault-Tolerant Hard Real-Time Systems. IEEE Transactions on Computers, 2011, 60, 1288-1299.	3.4	31
43	A Body Biasing Method for Charge Recovery Circuits: Improving the Energy Efficiency and DPA-Immunity. , 2010, , .		2
44	Sub-threshold charge recovery circuits. , 2010, , .		8
45	Schedule Swapping: A Technique for Temperature Management of Distributed Embedded Systems. , 2010, , .		1
46	Fault Tolerant and Low Energy Write-Back Heterogeneous Set Associative Cache for DSM Technologies. , 2009, , .		0
47	Joint write policy and fault-tolerance mechanism selection for caches in DSM technologies: Energy-reliability trade-off. , 2009, , .		Ο
48	A Novel SET/SEU Hardened Parallel I/O Port. , 2009, , .		1
49	A low-cost fault-tolerant technique for Carry Look-Ahead adder. , 2009, , .		3
50	A High Speed and Low Cost Error Correction Technique for the Carry Select Adder. , 2009, , .		3
51	A Micro-FT-UART for Safety-Critical SoC-Based Applications. , 2009, , .		0
52	SEU-Hardened Energy Recovery Pipelined Interconnects for On-Chip Networks. , 2008, , .		1
53	A cost-effective error detection and roll-back recovery technique for embedded microprocessor control logic. , 2008, , .		4
54	An Asymmetric Checkpointing and Rollback Error Recovery Scheme for Embedded Processors. , 2008, , .		4

#	Article	IF	CITATIONS
55	Joint Consideration of Fault-Tolerance, Energy-Efficiency and Performance in On-Chip Networks. , 2007, , .		43