Andrew Oberst

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6941466/publications.pdf

Version: 2024-02-01

38 papers

10,509 citations

32 h-index 355658 38 g-index

39 all docs 39 docs citations

39 times ranked

15218 citing authors

#	Article	IF	CITATIONS
1	The Antisocial Network: Cross Talk Between Cell Death Programs in Host Defense. Annual Review of Immunology, 2021, 39, 77-101.	9.5	60
2	T cells instruct myeloid cells to produce inflammasome-independent IL- $1\hat{l}^2$ and cause autoimmunity. Nature Immunology, 2020, 21, 65-74.	7.0	61
3	Identification of MYC as an antinecroptotic protein that stifles RIPK1–RIPK3 complex formation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 19982-19993.	3.3	17
4	De novo necroptosis creates an inflammatory environment mediating tumor susceptibility to immune checkpoint inhibitors. Communications Biology, 2020, 3, 645.	2.0	30
5	Outcomes of RIP Kinase Signaling During Neuroinvasive Viral Infection. Current Topics in Microbiology and Immunology, 2020, , 1.	0.7	3
6	STING is required for host defense against neuropathological West Nile virus infection. PLoS Pathogens, 2019, 15, e1007899.	2.1	29
7	RIPK3 Activation Leads to Cytokine Synthesis that Continues after Loss of Cell Membrane Integrity. Cell Reports, 2019, 28, 2275-2287.e5.	2.9	85
8	Intratumoral activation of the necroptotic pathway components RIPK1 and RIPK3 potentiates antitumor immunity. Science Immunology, 2019, 4, .	5.6	242
9	Universal Principled Review: A Community-Driven Method to Improve Peer Review. Cell, 2019, 179, 1441-1445.	13.5	6
10	The Nucleotide Sensor ZBP1 and Kinase RIPK3 Induce the Enzyme IRG1 to Promote an Antiviral Metabolic State in Neurons. Immunity, 2019, 50, 64-76.e4.	6.6	214
11	Comparing the effects of different cell death programs in tumor progression and immunotherapy. Cell Death and Differentiation, 2019, 26, 115-129.	5.0	74
12	Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death and Differentiation, 2018, 25, 486-541.	5.0	4,036
13	Intracellular Nucleic Acid Sensing Triggers Necroptosis through Synergistic Type I IFN and TNF Signaling. Journal of Immunology, 2018, 200, 2748-2756.	0.4	117
14	Mitochondrial inner membrane permeabilisation enables mt <scp>DNA</scp> release during apoptosis. EMBO Journal, 2018, 37, .	3.5	313
15	MLKL Activation Triggers NLRP3-Mediated Processing and Release of IL-1β Independently of Gasdermin-D. Journal of Immunology, 2017, 198, 2156-2164.	0.4	158
16	NPM1 directs PIDDosome-dependent caspase-2 activation in the nucleolus. Journal of Cell Biology, 2017, 216, 1795-1810.	2.3	55
17	<scp>RIPK</scp> 3 in cell death and inflammation: the good, the bad, and the ugly. Immunological Reviews, 2017, 277, 102-112.	2.8	92
18	Controlled detonation: evolution of necroptosis in pathogen defense. Immunology and Cell Biology, 2017, 95, 131-136.	1.0	38

#	Article	IF	Citations
19	RIPK3 Restricts Viral Pathogenesis via Cell Death-Independent Neuroinflammation. Cell, 2017, 169, 301-313.e11.	13.5	163
20	Necroptosis in development, inflammation and disease. Nature Reviews Molecular Cell Biology, 2017, 18, 127-136.	16.1	687
21	MK2 balances inflammation and cell death. Nature Cell Biology, 2017, 19, 1150-1152.	4.6	8
22	Programmed Cell Death and Inflammation: Winter Is Coming. Trends in Immunology, 2017, 38, 705-718.	2.9	91
23	Mitochondrial permeabilization engages NF-κB-dependent anti-tumour activity under caspaseÂdeficiency. Nature Cell Biology, 2017, 19, 1116-1129.	4.6	181
24	RIPK3 Activates Parallel Pathways of MLKL-Driven Necroptosis and FADD-Mediated Apoptosis to Protect against Influenza A Virus. Cell Host and Microbe, 2016, 20, 13-24.	5.1	299
25	Death in the fast lane: what's next for necroptosis?. FEBS Journal, 2016, 283, 2616-2625.	2.2	36
26	Mito-priming as a method to engineer Bcl-2 addiction. Nature Communications, 2016, 7, 10538.	5.8	53
27	Activity of Uncleaved Caspase-8 Controls Anti-bacterial Immune Defense and TLR-Induced Cytokine Production Independent of Cell Death. PLoS Pathogens, 2016, 12, e1005910.	2.1	74
28	Limited Mitochondrial Permeabilization Causes DNA Damage and Genomic Instability in the Absence of Cell Death. Molecular Cell, 2015, 57, 860-872.	4.5	341
29	Caspase-8 scaffolding function and MLKL regulate NLRP3 inflammasome activation downstream of TLR3. Nature Communications, 2015, 6, 7515.	5.8	205
30	RIPK1 and NF-κB signaling in dying cells determines cross-priming of CD8 ⁺ T cells. Science, 2015, 350, 328-334.	6.0	466
31	Cutting Edge: Endoplasmic Reticulum Stress Licenses Macrophages To Produce Mature IL-1β in Response to TLR4 Stimulation through a Caspase-8– and TRIF-Dependent Pathway. Journal of Immunology, 2014, 192, 2029-2033.	0.4	149
32	Caspase-8 mediates caspase-1 processing and innate immune defense in response to bacterial blockade of NF- \hat{l}^{2} B and MAPK signaling. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7385-7390.	3.3	215
33	Autophagy Controls the Kinetics and Extent of Mitochondrial Apoptosis by Regulating PUMA Levels. Cell Reports, 2014, 7, 45-52.	2.9	93
34	Widespread Mitochondrial Depletion via Mitophagy Does Not Compromise Necroptosis. Cell Reports, 2013, 5, 878-885.	2.9	240
35	FLIPL induces caspase 8 activity in the absence of interdomain caspase 8 cleavage and alters substrate specificity. Biochemical Journal, 2011, 433, 447-457.	1.7	194
36	It cuts both ways: reconciling the dual roles of caspase 8 in cell death and survival. Nature Reviews Molecular Cell Biology, 2011, 12, 757-763.	16.1	145

#	Article	IF	CITATIONS
37	Catalytic activity of the caspase-8–FLIPL complex inhibits RIPK3-dependent necrosis. Nature, 2011, 471, 363-367.	13.7	1,059
38	Inducible Dimerization and Inducible Cleavage Reveal a Requirement for Both Processes in Caspase-8 Activation. Journal of Biological Chemistry, 2010, 285, 16632-16642.	1.6	178