Ana B Bugnot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/694136/publications.pdf

Version: 2024-02-01

567281 580821 26 977 15 25 citations h-index g-index papers 26 26 26 1124 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Identifying the consequences of ocean sprawl for sedimentary habitats. Journal of Experimental Marine Biology and Ecology, 2017, 492, 31-48.	1.5	183
2	Ecoâ€engineering urban infrastructure for marine and coastal biodiversity: Which interventions have the greatest ecological benefit?. Journal of Applied Ecology, 2018, 55, 426-441.	4.0	160
3	Current and projected global extent of marine built structures. Nature Sustainability, 2021, 4, 33-41.	23.7	139
4	Emerging Solutions to Return Nature to the Urban Ocean. Annual Review of Marine Science, 2021, 13, 445-477.	11.6	69
5	Functional and structural responses to marine urbanisation. Environmental Research Letters, 2018, 13, 014009.	5.2	67
6	Building â€~blue': An eco-engineering framework for foreshore developments. Journal of Environmental Management, 2017, 189, 109-114.	7.8	54
7	A global model to forecast coastal hardening and mitigate associated socioecological risks. Nature Sustainability, 2021, 4, 1060-1067.	23.7	42
8	Sperm production in the red claw crayfish Cherax quadricarinatus (Decapoda, Parastacidae). Aquaculture, 2009, 295, 292-299.	3.5	37
9	Urban impacts across realms: Making the case for inter-realm monitoring and management. Science of the Total Environment, 2019, 648, 711-719.	8.0	37
10	Making seawalls multifunctional: The positive effects of seeded bivalves and habitat structure on species diversity and filtration rates. Marine Environmental Research, 2021, 165, 105243.	2.5	22
11	A novel framework for the use of remote sensing for monitoring catchments at continental scales. Journal of Environmental Management, 2018, 217, 939-950.	7.8	21
12	Artificial structures alter kelp functioning across an urbanised estuary. Marine Environmental Research, 2018, 139, 136-143.	2.5	21
13	Structural alterations in the male reproductive system of the freshwater crayfish, Cherax quadricarinatus (Decapoda, Parastacidae). Journal of Invertebrate Pathology, 2009, 102, 160-166.	3.2	17
14	Learning from nature to enhance Blue engineering of marine infrastructure. Ecological Engineering, 2018, 120, 611-621.	3.6	15
15	Eco-engineering increases habitat availability and utilisation of seawalls by fish. Ecological Engineering, 2019, 138, 403-411.	3.6	15
16	Sediment bacterial communities associated with environmental factors in Intermittently Closed and Open Lakes and Lagoons (ICOLLs). Science of the Total Environment, 2019, 693, 133462.	8.0	15
17	Ecological impacts of two non-indigenous macroalgae on an urban rocky intertidal shore. Marine Biology, 2016, 163, 1.	1.5	10
18	Toward crossâ€realm management of coastal urban ecosystems. Frontiers in Ecology and the Environment, 2021, 19, 225-233.	4.0	10

#	Article	IF	CITATIONS
19	Effects of the receiving assemblage and disturbance on the colonisation of an invasive species. Marine Biology, 2016, 163, 1.	1.5	9
20	Patterns of the Non-Indigenous Isopod Cirolana harfordi in Sydney Harbour. PLoS ONE, 2014, 9, e86765.	2.5	8
21	Comparison of wrack dynamics between mangrove forests with and without seawalls. Science of the Total Environment, 2021, 751, 141371.	8.0	7
22	Linking habitat interactions and biodiversity within seascapes. Ecosphere, 2022, 13, .	2.2	7
23	Community-level impacts of the invasive isopod Cirolana harfordi. Biological Invasions, 2015, 17, 1149-1161.	2.4	5
24	Supporting urban ecosystem services across terrestrial, marine and freshwater realms. Science of the Total Environment, 2022, 817, 152689.	8.0	5
25	Belowâ€ground ecosystem engineers enhance biodiversity and function in a polluted ecosystem. Journal of Applied Ecology, 2022, 59, 2094-2105.	4.0	2
26	Variation in the density and body size of a threatened foundation species across multiâ€spatial scales. Restoration Ecology, 0, , .	2.9	0