Shaofeng Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6941210/publications.pdf

Version: 2024-02-01

		147566	182168
52	4,793 citations	31	51
papers	citations	h-index	g-index
53	53	53	6198
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Activation of inert copper for significantly enhanced hydrogen evolution behaviors by trace ruthenium doping. Nano Energy, 2022, 92, 106763.	8.2	38
2	Thermal-healing of lattice defects for high-energy single-crystalline battery cathodes. Nature Communications, 2022, 13, 704.	5.8	33
3	Mismatching integration-enabled strains and defects engineering in LDH microstructure for high-rate and long-life charge storage. Nature Communications, 2022, 13, 1409.	5.8	42
4	Toward commercial-level mass-loading electrodes for supercapacitors: opportunities, challenges and perspectives. Energy and Environmental Science, 2021, 14, 576-601.	15.6	166
5	Operando Tailoring of Defects and Strains in Corrugated βâ€Ni(OH) ₂ Nanosheets for Stable and Highâ€Rate Energy Storage. Advanced Materials, 2021, 33, e2006147.	11.1	44
6	A closed-loop and scalable process for the production of biomass-derived superhydrophilic carbon for supercapacitors. Green Chemistry, 2021, 23, 3400-3409.	4.6	80
7	A Hierarchical-Structured Impeller with Engineered Pd Nanoparticles Catalyzing Suzuki Coupling Reactions for High-Purity Biphenyl. ACS Applied Materials & Interfaces, 2021, 13, 17429-17438.	4.0	16
8	Reversible Mn/Cr dual redox in cation-disordered Li-excess cathode materials for stable lithium ion batteries. Acta Materialia, 2021, 212, 116935.	3.8	16
9	Multiphase, Multiscale Chemomechanics at Extreme Low Temperatures: Battery Electrodes for Operation in a Wide Temperature Range. Advanced Energy Materials, 2021, 11, 2102122.	10.2	27
10	Operando leaching of pre-incorporated Al and mechanism in transition-metal hybrids on carbon substrates for enhanced charge storage. Matter, 2021, 4, 2902-2918.	5.0	22
11	Ultrafast construction of interfacial sites by wet chemical etching to enhance electrocatalytic oxygen evolution. Nano Energy, 2020, 69, 104367.	8.2	58
12	Insights into the electronic origin of enhancing the catalytic activity of Co3O4 for oxygen evolution by single atom ruthenium. Nano Today, 2020, 34, 100955.	6.2	29
13	Mutual modulation between surface chemistry and bulk microstructure within secondary particles of nickel-rich layered oxides. Nature Communications, 2020, 11 , 4433.	5.8	78
14	Ultrafast Construction of Oxygen-Containing Scaffold over Graphite for Trapping Ni ²⁺ into Single Atom Catalysts. ACS Nano, 2020, 14, 11662-11669.	7.3	20
15	Depth-dependent valence stratification driven by oxygen redox in lithium-rich layered oxide. Nature Communications, 2020, 11, 6342.	5.8	34
16	Halide-based solid-state electrolyte as an interfacial modifier for high performance solid-state Li–O2 batteries. Nano Energy, 2020, 75, 105036.	8.2	45
17	Boosting charge storage in 1D manganese oxide-carbon composite by phosphorus-assisted structural modification for supercapacitor applications. Energy Storage Materials, 2020, 31, 172-180.	9.5	30
18	Operando Revealing Dynamic Reconstruction of NiCo Carbonate Hydroxide for High-Rate Energy Storage. Joule, 2020, 4, 673-687.	11.7	88

#	Article	IF	Citations
19	Decoupling and correlating the ion transport by engineering 2D carbon nanosheets for enhanced charge storage. Nano Energy, 2019, 64, 103921.		90
20	Surface-to-Bulk Redox Coupling through Thermally Driven Li Redistribution in Li- and Mn-Rich Layered Cathode Materials. Journal of the American Chemical Society, 2019, 141, 12079-12086.	6.6	47
21	Multilevel Coupled Hybrids Made of Porous Cobalt Oxides and Graphene for Highâ€Performance Lithium Storage. Chemistry - A European Journal, 2019, 25, 5527-5533.	1.7	6
22	Activation of transition metal oxides by in-situ electro-regulated structure-reconstruction for ultra-efficient oxygen evolution. Nano Energy, 2019, 58, 778-785.	8.2	81
23	A Universal Converse Voltage Process for Triggering Transition Metal Hybrids In Situ Phase Restruction toward Ultrahighâ€Rate Supercapacitors. Advanced Materials, 2019, 31, e1901241.	11.1	81
24	Trace doping of multiple elements enables stable battery cycling of LiCoO2 at 4.6 V. Nature Energy, 2019, 4, 594-603.	19.8	572
25	Polyethyleneimine-Mediated Fabrication of Two-Dimensional Cobalt Sulfide/Graphene Hybrid Nanosheets for High-Performance Supercapacitors. ACS Applied Materials & Samp; Interfaces, 2019, 11, 26235-26242.	4.0	35
26	A Phase Transformationâ€Resistant Electrode Enabled by a MnO ₂ â€Confined Effect for Enhanced Energy Storage. Advanced Functional Materials, 2019, 29, 1901342.	7.8	18
27	Phase controllable synthesis of Ni2+ post-modified CoP nanowire for enhanced oxygen evolution. Nano Energy, 2019, 62, 136-143.	8.2	66
28	A recyclable route to produce biochar with a tailored structure and surface chemistry for enhanced charge storage. Green Chemistry, 2019, 21, 2095-2103.	4.6	23
29	Electrochemically Driven Coordination Tuning of FeOOH Integrated on Carbon Fiber Paper for Enhanced Oxygen Evolution. Small, 2019, 15, e1901015.	5.2	46
30	Strategies and insights towards the intrinsic capacitive properties of MnO2 for supercapacitors: Challenges and perspectives. Nano Energy, 2019, 57, 459-472.	8.2	232
31	An electrocatalyst with anti-oxidized capability for overall water splitting. Nano Research, 2018, 11, 3411-3418.	5.8	16
32	Microporous MOFs Engaged in the Formation of Nitrogenâ€Doped Mesoporous Carbon Nanosheets for Highâ€Rate Supercapacitors. Chemistry - A European Journal, 2018, 24, 2681-2686.	1.7	21
33	Phosphate Species up to 70% Mass Ratio for Enhanced Pseudocapacitive Properties. Small, 2018, 14, e1803811.	5.2	29
34	Surfaceâ€Confined Fabrication of Ultrathin Nickel Cobaltâ€Layered Double Hydroxide Nanosheets for Highâ€Performance Supercapacitors. Advanced Functional Materials, 2018, 28, 1803272.	7.8	215
35	Ultrahighâ€Capacity and Longâ€Life Lithium–Metal Batteries Enabled by Engineering Carbon Nanofiber–Stabilized Graphene Aerogel Film Host. Small, 2018, 14, e1803310.	5.2	48
36	Graphite-graphene architecture stabilizing ultrafine Co3O4 nanoparticles for superior oxygen evolution. Carbon, 2018, 140, 17-23.	5.4	20

#	Article	IF	CITATIONS
37	Decoupling atomic-layer-deposition ultrafine RuO 2 for high-efficiency and ultralong-life Li-O 2 batteries. Nano Energy, 2017, 34, 399-407.		63
38	Iron-tuned super nickel phosphide microstructures with high activity for electrochemical overall water splitting. Nano Energy, 2017, 34, 472-480.	8.2	258
39	Ultrafine MoO ₂ â€Carbon Microstructures Enable Ultralongâ€Life Powerâ€Type Sodium Ion Storage by Enhanced Pseudocapacitance. Advanced Energy Materials, 2017, 7, 1602880.		306
40	A superhydrophilic "nanoglue―for stabilizing metal hydroxides onto carbon materials for high-energy and ultralong-life asymmetric supercapacitors. Energy and Environmental Science, 2017, 10, 1958-1965.	15.6	294
41	Supercapacitors: Highâ€Stackingâ€Density, Superiorâ€Roughness LDH Bridged with Vertically Aligned Graphene for Highâ€Performance Asymmetric Supercapacitors (Small 37/2017). Small, 2017, 13, .	5.2	1
42	Sodiumâ€lon Batteries: Ultrafine MoO ₂ â€Carbon Microstructures Enable Ultralongâ€Life Powerâ€Type Sodium Ion Storage by Enhanced Pseudocapacitance (Adv. Energy Mater. 15/2017). Advanced Energy Materials, 2017, 7, .	10.2	2
43	Enhanced sodium storage capability enabled by super wide-interlayer-spacing MoS2 integrated on carbon fibers. Nano Energy, 2017, 41, 66-74.	8.2	273
44	Highâ€Stackingâ€Density, Superiorâ€Roughness LDH Bridged with Vertically Aligned Graphene for Highâ€Performance Asymmetric Supercapacitors. Small, 2017, 13, 1701288.	5.2	83
45	Interface Engineering of Ni ₃ N@Fe ₃ N Heterostructure Supported on Carbon Fiber for Enhanced Water Oxidation. Industrial & Samp; Engineering Chemistry Research, 2017, 56, 14245-14251.	1.8	35
46	Starch Derived Porous Carbon Nanosheets for High-Performance Photovoltaic Capacitive Deionization. Environmental Science & Env	4.6	120
47	Ultrathin Nitrogenâ€Enriched Hybrid Carbon Nanosheets for Supercapacitors with Ultrahigh Rate Performance and High Energy Density. ChemElectroChem, 2017, 4, 369-375.	1.7	32
48	High performance asymmetric capacitive mixing with oppositely charged carbon electrodes for energy production from salinity differences. Journal of Materials Chemistry A, 2017, 5, 20374-20380.	5 . 2	31
49	Bridging of Ultrathin NiCo ₂ O ₄ Nanosheets and Graphene with Polyaniline: A Theoretical and Experimental Study. Chemistry of Materials, 2016, 28, 5855-5863.	3.2	116
50	Ultrasmall diiron phosphide nanodots anchored on graphene sheets with enhanced electrocatalytic activity for hydrogen production via high-efficiency water splitting. Journal of Materials Chemistry A, 2016, 4, 16028-16035.	5.2	44
51	Electroactive edge site-enriched nickel–cobalt sulfide into graphene frameworks for high-performance asymmetric supercapacitors. Energy and Environmental Science, 2016, 9, 1299-1307.	15.6	623
52	<i>Operando</i> Leaching of Pre-Incorporated Al and Mechanism in Transition Metal Hybrids for Elaborately Enhanced Charge Storage. SSRN Electronic Journal, 0, , .	0.4	0